
Information Processing Letters 115 (2015) 146–150

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A case for a fast trip count predictor

Péricles R.O. Alves, Raphael E. Rodrigues, Rafael Martins de Sousa,
Fernando Magno Quintão Pereira ∗

UFMG, 6627 Antônio Carlos Av, 31.270-010, Belo Horizonte, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 April 2014
Received in revised form 7 July 2014
Accepted 19 August 2014
Available online 6 September 2014
Communicated by J.L. Fiadeiro

Keywords:
Compilers
Programming languages
JIT Compilation
Loop Analysis
Trip Count Prediction

The Trip Count of a loop determines how many iterations this loop performs. Predicting
this value is important for several compiler optimizations, which yield greater benefits for
large trip counts, and are either innocuous or detrimental for small ones. However, finding
an exact prediction, in general, is an undecidable problem. Such problems are usually
approached via methods which tend to be computationally expensive. In this paper we
make a case for a cheap trip count prediction heuristic, which is O (1) on the size of the
loop. We argue that our technique is useful to just-in-time compilers. If we predict that
a loop will iterate for a long time, then we invoke the JIT compiler earlier. Even though
straightforward, our observation is novel. We show how this idea speeds up JavaScript
programs, by implementing it in Mozilla Firefox. We can apply our heuristic in 79.9% of the
loops found in typical JavaScript benchmarks. For these loops, we obtain exact predictions
in 91% of cases. We get similar results when analyzing the C programs of SPEC CPU 2006.
A more elaborate technique, linear on the size of the loop, improves our O (1) technique
only marginally. As a consequence of this work, we have been able to speed up several
JavaScript programs by over 5%, reaching 24% of improvement in one benchmark.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Trip Count of a loop determines how many times
this loop iterates during the execution of a program. The
problem of estimating this value, before the loop executes,
is important in several ways. For instance, loops that tend
to run for long time are good candidates for unrolling and
vectorization. Therefore, the academia has spent substan-
tial effort in the development of accurate methods to esti-
mate the trip count of loops [1–3,7–9].

Trip count prediction is usually approached via expen-
sive deduction systems, typically based on SAT solvers [7],
ranking functions [3] or recurrence relations [2,10]. Walk-

* Corresponding author.
E-mail addresses: periclesrafael@dcc.ufmg.br (P.R.O. Alves),

raphael@dcc.ufmg.br (R.E. Rodrigues), rafaelms@dcc.ufmg.br
(R.M. de Sousa), fernando@dcc.ufmg.br (F.M. Quintão Pereira).

ing in the opposite direction, this paper makes a case for a
fast trip count predictor. We instrument a program – or its
interpreter – to estimate the trip count of loops immedi-
ately before these loops are visited by the execution flow.
Our heuristic checks the stop condition of a loop, inspect-
ing the current state of the variables used in that condi-
tional. As an example, an iterator such as for (int i = M;
i < N; i+ +) is guarded by the stop condition i < N. We
assume that the difference val(N) − val(i) gives us the
trip count of the loop, where val(x) is the runtime value
of x when the test is performed. This trip count predictor
is so simple that its effectiveness and accuracy can be re-
garded as compiler’s folklore.

The goal of this paper is to support this intuition with
concrete evidence demonstrating that our O (1) heuris-
tic is useful and precise. To establish the first point, we
have used it in the JavaScript engine of Mozilla Firefox.
If our heuristic predicts a large trip count for a loop, then

http://dx.doi.org/10.1016/j.ipl.2014.08.008
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.08.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:periclesrafael@dcc.ufmg.br
mailto:raphael@dcc.ufmg.br
mailto:rafaelms@dcc.ufmg.br
mailto:fernando@dcc.ufmg.br
http://dx.doi.org/10.1016/j.ipl.2014.08.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.08.008&domain=pdf

P.R.O. Alves et al. / Information Processing Letters 115 (2015) 146–150 147

Algorithm 1 Trip Count Instrumentation Heuristic.
Input: Loop L
Output: Loop L′ with new instructions that estimate its maximum trip count
1: if L has stop condition “v1 < v2”, where v1 and v2 are variables in registers then
2: Insert statement “tripcount = |v1 − v2|” in the pre-header of L, giving L′ .
3: end if

Algorithm 2 Trip Count Instrumentation Based on Colliding Vectors.
Input: Loop L
Output: Instrumented Loop L′ with new instructions that estimate its maximum trip count
1: if If L has stop condition “v1 < v2”, where v1 and v2 are variables in registers then
2: s1t + i1 = indVar(v1), s2t + i2 = indVar(v2),
3: where s j is the maximum step and i j is initial value of basic induction variable v j , j ∈ {1, 2}.
4: if ∃ step then
5: Insert statement “tripcount = |(i2 − i1)/(s1 − s2)|” in the pre-header of L, giving L′ .
6: end if
7: end if

we call the JIT compiler before its warm-up period. This
early compilation lets us vary the execution time of pub-
lic benchmarks from −7% up to 24%, as we will discuss in
Section 4. Even though this technique is straightforward,
we believe that we are the first group to test it in an
industrial-strength virtual machine.

Our heuristic is surprisingly accurate, given its sim-
plicity. We can apply it in 79.9% of the loops found in
typical JavaScript benchmarks, and in 67.0% of the loops
found in SPEC CPU 2006. We call these structures inter-
val loops. We have predicted exactly the bounds of 91.1% of
the JavaScript interval loops, and of 89.2% of SPEC’s interval
loops. We have compared our approach against a heavier
heuristic, which demands a holistic view of the loops. The
gains that we get with the extra complexity are negligible.

Related works This paper touches two fields in computer
science: complexity analysis and just-in-time compilation.
Most complexities analyses are not heuristics, but – in-
complete – proof techniques, whose result is true, if there
is one. For the reader interested in knowing more about
the state-of-the-art approaches in complexity analysis, we
recommend the Related Works section of Brockschmidt et
al.’s recent paper [3]. The cheapest technique that we are
aware of is due to Blanc et al. [2]. Blanc et al.’s method
is similar to our Algorithm 2, when applied on chains of
nested loops. None of these approaches have been tested
in the context of a Just-In-Time compiler before. Namjoshi
and Kulkarni [11] have demonstrated via simulation that
it is possible to speed up a JIT compiler via loop predic-
tion; however, they have not implemented any particular
heuristic in a virtual machine. Popular runtime environ-
ments, such as Java Hotspot, Google V8, PyPy or Mozilla’s
IonMonkey have never used loop prediction. An exception
is LuaJIT, which checks iterator bounds in a specific high-
level construct, e.g., for i=start,stop,step do. Lu-
aJIT does it to avoid compiling a loop with a very low
remaining iteration count.

2. Fast trip count prediction

The stop condition of a loop is a boolean test that, when
true, forces the program flow to exit the loop. We say that
a loop is an interval loop if its stop condition is a com-

parison of two variables v1 and v2 using an inequality
(<, ≤, >, or ≥). The variable i is a basic induction vari-
able of a loop if the only definitions of i within the loop
are of the form i = i + s or i = i − s, and s is loop invari-
ant. We say that s is the step of i. A loop is single-exit if
it has only one stop condition. We call a single-exit inter-
val loop trivial if its stop condition is like “i op N”, where
(i) op ∈ {<, ≤, >, ≥}; (ii) i is a basic induction variable;
(iii) the step of i is 1; and (iv) N is loop invariant. As an
example, for (int i = M; i < N; i+ +) is a trivial in-
terval loop, with stop condition i < N, and basic induction
variable i.

Because trivial loops are common in practice; this pa-
per studies the effectiveness of an O (1) trip count predic-
tor that works exactly for them. We assume that the trip
count of a loop is the absolute difference between the vari-
ables used in its stop condition. For instance, considering
our previous loop example, we assume that its trip count
is |val(N) − val(i)|, where val(v) is the runtime value
of variable v when the loop is first visited by the program
flow. We generate the commands to perform this subtrac-
tion statically, upon compiling the program, but the ac-
tual estimation happens, naturally, at runtime. Algorithm 1
shows the code generation for conditions such as v1 < v2.
Obvious adaptations are necessary to handle >, ≤ and ≥.

Because our heuristic is so uninvolved, it can be imple-
mented quickly. Our code generation does not require any
global analysis of the loop. We do not try to infer the step
of the induction variable, neither we try to find out which
limits of the stop condition are invariant. We simply per-
form the subtraction of limits. Thus, our code generator
runs in O (1) per loop. As we will explain shortly, it suits
perfectly the needs of a just-in-time compiler.

A more elaborate analysis Many loops found in real-world
applications are trivial, yet, there are several others which
are not. To demonstrate that our heuristic is still precise
even in more complex cases, we compare it against a more
elaborate one. This new heuristic treats induction vari-
ables used in loop conditions as rectilinear vectors such
as s × t + i, where s is the step and i the initial value of
the induction variable. The trip count t of the loop is the
time when these vectors collide. Algorithm 2 describes our
second heuristic.

Download English Version:

https://daneshyari.com/en/article/10331876

Download Persian Version:

https://daneshyari.com/article/10331876

Daneshyari.com

https://daneshyari.com/en/article/10331876
https://daneshyari.com/article/10331876
https://daneshyari.com

