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We consider the following decision problem: given a finite Markov chain with distinguished 
source and target states, and given a rational number r, does there exist an integer n such 
that the probability to reach the target from the source in n steps is r? This problem, 
which is not known to be decidable, lies at the heart of many model checking questions on 
Markov chains. We provide evidence of the hardness of the problem by giving a reduction 
from the Skolem Problem: a number-theoretic decision problem whose decidability has 
been open for many decades.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

By now there is a large body of work on model check-
ing Markov chains; see [3] for references. Most of this 
work focuses on verifying linear- and branching-time prop-
erties of trajectories, typically by solving systems of lin-
ear equations or by linear programming. An alternative 
approach [1,2,4–6] considers specifications on the state 
distribution of the Markov chain at each time step, e.g., 
whether the probability to be in a given state is always 
at least 1/3. With this shift in view the associated al-
gorithmic questions become surprisingly subtle, with not 
even decidability assured. Strikingly the works [1,2,4] only 
present incomplete or approximate verification algorithms. 
Similarly, in [5,6], the authors make additional assump-
tions (e.g., contraction properties, boundary assumptions) 
to obtain model-checking procedures.

The paper [4] highlights the following fundamental de-
cision problem on Markov chains:

* Corresponding author.

Markov Reachability. Given a finite stochastic matrix M
with rational entries and a rational number r, does there 
exist n ∈N such that (Mn)1,2 = r?

This problem asks whether there exists n such that 
the probability to go from State 1 to State 2 in n steps 
is exactly r. This is quite different from asking for the 
probability to go from State 1 to State 2 in any number 
of steps. Whereas the latter quantity can be computed in 
polynomial time by solving a system of linear equations, 
the Markov Reachability Problem is not known even to be 
decidable.

In Section 3 we observe that the Markov Reachability 
Problem can be encoded in the model checking frame-
works of [1,2,4]. An inequality variant of the problem, ask-
ing for n such that (Mn)1,2 > r, is essentially the threshold 
problem for unary probabilistic automata [9], whose decid-
ability is also open.

The paper [4] notes the close resemblance of the 
Markov Reachability Problem with the Skolem Problem in 
number theory and raises the question of whether the lat-
ter can be reduced to the Markov Reachability Problem.
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Skolem Problem. Given a k × k integer matrix M , does 
there exist n such that (Mn)1,2 = 0?

The closely related Positivity Problem [8] asks whether 
there exists n such that (Mn)1,2 > 0.1 There is a straight-
forward reduction of the Skolem Problem to the Positivity 
Problem (which however does not preserve the dimension 
of the matrices involved).

The Skolem and Positivity Problems have been the sub-
ject of much study, and their decidability has been open 
for several decades. Currently the Skolem Problem is only 
known to be decidable for matrices of dimension at most 4 
(see, e.g., [7,11]) while the Positivity Problem is known 
only to be decidable up to dimension 5 (cf. [8]). More-
over for matrices of dimension 6 a decision procedure for 
the Positivity Problem would necessarily entail significant 
new results in Diophantine approximation—specifically the 
computability of the Lagrange constants of a general class 
of transcendental numbers [8].

While the Markov Reachability Problem and the Skolem 
Problem are very similar in form, the well-behaved spec-
tral theory of stochastic matrices might lead one to con-
jecture that the former is more tractable. However in this 
note we give a reduction of the Skolem Problem to the 
Markov Reachability Problem. The same reduction trans-
forms the Positivity Problem to the inequality version of 
the Markov Reachability Problem. In conjunction with the 
above-mentioned results of [8], this entails that the com-
putability of some of the most basic problems in prob-
abilistic verification will require significant advances in 
number theory.

2. Main result

In this section we give a polynomial-time reduction of 
the Skolem Problem to the Markov Reachability Problem. 
This is accomplished in two steps via the following inter-
mediate problem:

Problem A. Given a k × k stochastic matrix M and col-
umn vector y ∈ {0, 1, 2}k , does there exist n such that 
eT Mn y = 1, where e = (1, 0, . . . , 0)T .

Thinking of M as the transition matrix of a Markov 
chain, Problem A asks if there exists n such that, starting 
from state 1, the state distribution w after n steps satisfies 
w T y = 1.

Proposition 1. The Skolem Problem can be reduced in polyno-
mial time to Problem A.

Proof. Given a k × k integer matrix M = (mij), we con-
struct a stochastic (2k +1) × (2k +1) matrix P̃ and a vector 
ṽ ∈ {0, 1, 2}2k+1, such that for all n ∈ N, (Mn)1,2 = 0 if and 
only if ̃eT P̃n ṽ = 1, where ̃e is the (2k + 1)-dimensional co-
ordinate vector (1, 0, . . . , 0)T .

1 Strictly speaking [8] defines the Positivity Problem to be the comple-
ment of the problem stated here. Since we are interested in questions of 
decidability the difference is inconsequential.

Let P be a 2k × 2k matrix of non-negative integers 
obtained by replacing each entry mij of M by the sym-

metric matrix 
( pij qi j

qi j pi j

)
, where pij := max(mij, 0) and qij :=

max(−mij, 0) satisfy pij − qij = mi, j .

The map ϕ sending 
( a b

b a

)
to a − b is a homomorphism 

from the ring of 2 × 2 symmetric integer matrices to Z. By 
definition of P , partitioning P into 2 × 2 blocks and ap-
plying ϕ to each block one obtains M . Since matrix prod-
ucts can be computed block-wise and ϕ is a homomor-
phism, it follows that applying ϕ to each 2 × 2 sub-block 
of Pn one obtains the matrix Mn . Thus (Mn)1,2 = eT Pn v , 
where e = (1, 0, . . . , 0)T and v = (0, 0, 1, −1, 0, . . . , 0)T are 
2k-dimensional vectors.

Since P is non-negative, there exists a non-negative 
scalar s ∈ Q such that sP is sub-stochastic, i.e., the sum 
of the entries in each row is at most one. Now define a 
(2k + 1)-dimensional matrix P̃ and vectors ̃e, ̃v by

ẽ =
(

e
0

)
P̃ =

(
sP 1 − sP 1
0 1

)
ṽ =

(
v
0

)
+ 1,

where 1 = (1, . . . , 1)T denotes a column vector of 1’s of 
the appropriate dimension. The rightmost column of P̃ is 
defined to make P̃ a stochastic matrix.

Since P̃ n is stochastic for each n ∈ N, we have that

ẽT P̃n ṽ = ẽT P̃n
(

v
0

)
+ ẽT P̃n1 = eT (sP )n v + 1

= sn(
Mn)

1,2 + 1.

From this we conclude that (Mn)1,2 = 0 iff ̃eT P̃n ṽ = 1. �
The next step shows how the vector ṽ can be made 

into a coordinate vector.

Proposition 2. Problem A can be reduced in polynomial time to 
the Markov Reachability Problem.

Proof. Given k-dimensional vectors e = (1, 0, . . . , 0)T and 
y ∈ {0, 1, 2}k , and a k × k stochastic matrix Q , we con-
struct a 2k + 3-dimensional stochastic matrix Q̃ such that 
eT Q n y = 1 if and only if (Q̃ 2n+1)1,2k+1 = 1

4 for all n ∈ N. 
In addition, the construction of Q̃ is such that for all n, 
(Q̃ 2n)1,2k+1 = 0, and thus by rearranging the rows and 
columns of Q̃ we get an instance of the Markov Reach-
ability Problem.

We first give an informal description of Q̃ , making ref-
erence to the example in Fig. 1. Thinking of Q as the 
transition matrix of a Markov chain, the idea is that Q̃
contains two copies of each state of Q (the circle and 
square states in Fig. 1). Each transition of Q is split into 
a length-two path in Q̃ connecting two circle states via 
an intermediate square state. Thus the underlying transi-
tion graph of Q̃ is bipartite. We also create a new bot-
tom strongly connected component in Q̃ with three states 
(states a, b and c in Fig. 1). The transition weights from Q
are halved in Q̃ , with half of the mass in each transition 
redirected to the new bottom strongly connected compo-
nent according to the final-state vector y. Looking at Fig. 1, 
the total mass entering state a from the shaded region in 
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