
Information Processing Letters 115 (2015) 170–174

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An approximation algorithm for the cutting-sticks problem

Jagadish M

Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 December 2012
Received in revised form 5 May 2014
Accepted 6 September 2014
Available online 13 October 2014
Communicated by M. Chrobak

Keywords:
Approximation algorithms
Cutting-sticks

The cuttings-sticks problem is the following. We are given a bundle of sticks all having 
integer lengths. The total sum of their lengths is n(n + 1)/2. Can we break the sticks so 
that the resulting sticks have lengths 1, 2, . . . , n? The problem is known to be NP-hard. 
We consider an optimization version of the problem which involves cutting the sticks and 
placing them into boxes. The problem has a trivial polynomial time algorithm with an 
approximation ratio of 2. We present a greedy algorithm that achieves an approximation 
ratio of 

√
2.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cutting-sticks problem. We are given k sticks all hav-
ing integer lengths. Their lengths are l1, . . . , lk and the total 
sum of their lengths is n(n + 1)/2. Can we break the sticks 
to get sticks of lengths 1,2, . . . ,n?

Notation. Let [r] denote the set {1, 2, . . . , r}.
We propose an optimization version of the cutting-

sticks problem and give an approximation algorithm for it. 
We first state the decision version of the problem slightly 
differently to resemble the optimization version.

Decision version. We are given k positive integers 
l1, . . . , lk as input. Their total sum is n(n + 1)/2. Can we 
partition the set [n] into k subsets B1, . . . , Bk such that 
the sum of numbers in Bi equals li for all 1 ≤ i ≤ k?

It is easy to see that the alternate formulation does not 
change the problem. For any positive instance, the ith stick 
can be broken down into sizes contained in the set Bi .

Optimization version. Given positive integers l1, . . . , lk
as input, find the smallest t for which we can partition 
the set [t] into k subsets B1, . . . , Bk such that the sum of 
numbers in Bi is at least li for all 1 ≤ i ≤ k. Output t and 
the corresponding partition in polynomial time.

E-mail address: jagadish@cse.iitb.ac.in.

Related work. The cutting-sticks problem is NP-hard 
since the 3-partition problem reduces to it [1]. For the 
special case when all the lengths are equal, there exists 
a polynomial time algorithm to solve the problem ex-
actly [2]. We give a 

√
2-approximation factor algorithm for 

the optimization version of the problem. Suppose we are 
given an instance of the problem that has t = OPT as the 
output. Our algorithm outputs a number that is at most √

2OPT and gives the corresponding partitioning of the set 
[�√2OPT�].

1.1. Physical interpretation

For ease of exposition, we give a physical interpretation 
of the optimization problem. Roughly, we can see the prob-
lem as breaking a set of sticks in order to fit them into a 
set of boxes.

Definition. The box bi is of size i. Box bi can contain a 
stick of length j if j ≤ i. Equivalently, a stick of length j
can fit into a box whose size is at least j. We refer to boxes 
b1, . . . , bt as ‘[t] boxes’.

The set of sticks is said to fit into [t] boxes, if the sticks 
can be broken into shorter sticks (pieces) such that:

1. Each piece fits into some box bi .
2. One box contains at most one piece. (Some boxes 

could remain empty.)

http://dx.doi.org/10.1016/j.ipl.2014.09.007
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.09.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jagadish@cse.iitb.ac.in
http://dx.doi.org/10.1016/j.ipl.2014.09.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.09.007&domain=pdf


J. M / Information Processing Letters 115 (2015) 170–174 171

Fig. 1. An optimal way to fit sticks of lengths 6, 5 and 4 into [5] boxes. 
The first stick is broken into two pieces of lengths 4 and 2. The second 
stick is a piece by itself. The third stick is broken into pieces of lengths 3 
and 1. The corresponding solution to the original optimization problem is 
B1 = {4, 2}, B2 = {5} and B3 = {3, 1}. If the sticks were of lengths 6, 5 
and 3, an optimal solution would still use [5] boxes and could have the 
same partition (box b1 would be left empty).

In light of the above definitions, the optimization prob-
lem we want to solve can be stated as follows. We are 
given k sticks s1, . . . , sk having lengths l1, . . . , lk , respec-
tively. What is the smallest number t for which we can we 
fit the sticks into [t] boxes?

For example, if the stick lengths are 6, 5 and 4, then 
smallest t for which we can fit the sticks into [t] boxes is 
5 (see Fig. 1).

If we can solve the above problem exactly, we can 
solve the decision version of the cutting-sticks problem 
too. Since the latter problem is NP-hard, we will look for 
an approximation algorithm. We give a polynomial time al-
gorithm with approximation factor 

√
2 for the above prob-

lem. In other words, suppose OPT is the smallest t for 
which we can fit the given sticks into [t] boxes. Our algo-
rithm outputs a number that is at most 

√
2OPT and gives 

a way to fit the sticks into [√2OPT] boxes.

2. Greedy algorithm

Assumption. We make a simplifying assumption that 
we know the value of OPT prior to the start of the algo-
rithm. This assumption can be removed by binary search-
ing for the minimum value for which the algorithm returns 
a solution. We defer the details to Section 4.5.

Informally, our algorithm works as follows. At each 
step, we pick the longest stick and either cut from one end 
of stick and place the piece into the largest empty box or 
place the stick itself into the box. The exact algorithm is 
given below. The parameter α denotes the approximation 
factor of the algorithm whose value will be fixed to 

√
2

with hindsight.
Fig. 2 shows the run of the algorithm on the input 

l1 = 6, l2 = 5, l3 = 4 with OPT = 5. The example shows a 
bad case when the algorithm fails when run with α = 1. 
The algorithm considers boxes in decreasing order of their 
sizes. In the first step, box b5 is picked and a portion equal 
to length 5 is cut from the stick s1. The remaining portion 
of the stick s1 has length 1. In the second step, the box b4
is picked and a piece of size 4 is cut from s2 and placed 
in b4. In the next step b3 is picked and so on. The greedy 
algorithm fails to fit all the sticks if it starts with α = 1. In 
the next section, we prove that if α ≥ √

2, then the algo-
rithm succeeds for any input.

Fig. 2. An execution of the greedy algorithm with [5] boxes. Although the 
sticks fit into [5] boxes optimally, the greedy algorithm fails to do so: a 
portion of the stick s3 is not fit into any box. It can be easily checked that 
if the greedy algorithm started with [6] boxes, then it would succeed in 
fitting all the sticks.

Initially, we have [αOPT] empty boxes and the sticks 
labelled s1, . . . , sk .

1. Pick the largest empty box available (say bi ). 
Note that box bi has size i. Pick the stick with 
the longest remaining length (say s j ). Let len(s j)

denote the current length of s j .
(a) If len(s j) ≤ i, then fit the remaining portion 

of the stick s j into bi .
(b) Otherwise, cut the stick s j from one end to 

get a piece of length i and place this piece 
into the box bi . The stick s j now has length 
equal to len(s j) − i.

In either case, box bi becomes non-empty after 
this step.

2. Repeat Step 1 until no empty box is available or 
until all the sticks are fit into boxes.

3. A lower bound on OPT

We are given an input with the guarantee that all the 
sticks will fit into [OPT] boxes. To prove an approximation 
ratio, we first need a lower bound on the value of OPT . We 
express lower bounds on OPT in terms of two quantities 
of the input: number of sticks and the total length of the 
sticks.

Claim 3.1. The number of sticks is at most OPT.

Proof. Every stick requires at least one box and there are 
only OPT boxes. �
Notation. Let 〈r〉 denote the quantity r(r + 1)/2.

Claim 3.2. The total length of all the sticks is at most 〈OPT〉.

Proof. All the sticks fit into [OPT] blocks. The total size of 
boxes is 〈OPT〉. �
4. Analysis

We prove that the above algorithm has an approxima-
tion ratio of 

√
2. We first discuss a weaker result that 

brings out a few aspects of our actual analysis.
Definitions. A partially filled box is one which contains 

a piece of stick that is strictly smaller than its size (the 



Download English Version:

https://daneshyari.com/en/article/10331881

Download Persian Version:

https://daneshyari.com/article/10331881

Daneshyari.com

https://daneshyari.com/en/article/10331881
https://daneshyari.com/article/10331881
https://daneshyari.com

