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Over the last decade, enhanced suffix arrays (ESA) have replaced suffix trees in many 
applications. Algorithms based on ESAs require less space, while allowing the same time 
efficiency as those based on suffix trees. However, this is only true when a suffix structure 
is used as a static index. Suffix trees can be updated faster than suffix arrays, which is 
a clear advantage in applications that require dynamic indexing. We show that for some 
dynamic applications a suffix array and the derived LCP-interval tree can be used in such 
a way that the actual index updates are not necessary. We demonstrate this in the case 
of grammar text compression with longest first substitution and provide the source code. 
The proposed algorithm has O (N2) worst case time complexity but runs in O (N) time in 
practice.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It was shown in [1] that string algorithms based on a 
suffix array (SA) enhanced with additional data structures 
are equivalent regarding the execution time complexity 
to those based on a suffix tree (ST), while requiring less 
space. The suffix array can be enhanced with a choice of 
additional data, such as the inverted suffix array, longest 
common prefix (LCP) array, suffix link table, LCP-interval 
tree, and interval child table. There exist a number of ef-
ficient algorithms for SA construction, both theoretically 
linear and practically fast [2,3]. Efficient linear-time algo-
rithms also exist for the construction of the LCP array [4,5], 
and all of the other data are easily derived from a suffix ar-
ray, or during its construction [1]. As a result, suffix arrays 
has been successfully used to replace suffix trees in various 
applications [6,7]. This is, however, only true for static ap-
plications. In cases when a dynamic update is needed the 
suffix tree still has an advantage. A typical example of a 

* Corresponding author.
E-mail addresses: ristov@irb.hr (S. Ristov), damir.korencic@irb.hr

(D. Korenčić).

dynamic application is text compression by substitution of 
a repeated substring with a new symbol or with a pointer, 
either to a previous occurrence in the string itself or to 
an entry in an external dictionary. This poses a problem 
of effective dynamic text indexing that has been addressed 
mostly by modifications in ST construction. Dynamic text 
indexing solves index updates after localized modifications 
of the input string, i.e., after replacement of a single oc-
currence of a substring. The specific problem is a global 
index update: a simultaneous substitution of multiple oc-
currences of a substring that, in particular, arises in the 
field of grammar compression. So far, the only method for 
a global update in (amortized) linear time is based on the 
suffix tree [8].

A few papers have addressed the usage of suffix arrays 
for dynamic indexing [9–11], even in the context of the 
global updates [9], but their solutions do not attain linear 
time complexity. In [11] authors show that the number of 
steps necessary for an update of a suffix array is propor-
tional to the average LCP value LCPave . Since LCPave is much 
smaller than the size of the text, updating SA is much 
faster than rebuilding it from scratch. A fully dynamic in-
dex must support random access insertions and deletions 
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(with a substitution as a combination thereof) and the 
method presented in [11] supports both of them. In this 
paper we show that, for a restricted problem of substitut-
ing parts of a string in predefined order, it is possible to 
use the enhanced suffix array to perform global updates in 
practically linear time. This result is based on the fact that 
the sum of the depths of LCP-interval tree over all the po-
sitions in SA is in effect linear with respect to the size of 
the input string. We have previously explored this fact in 
the construction of a fast algorithm for the compression of 
finite automata, based on the replacement of a repeated 
substring with the pointer to a previous occurrence in the 
string [12]. Here we demonstrate how this can be used to 
solve another problem in string compression, specifically, 
grammar text compression with longest first substitution.

2. Grammar text compression

The concept of context free grammar production rules 
as a means of string compression was formalized in [13]
and has been known as the grammar text compression 
since [14,15]. However, grammar text compression is only 
a specific approach to the problem of compression by tex-
tual substitution [16,17] that has been addressed earlier 
[17–19].

The idea of grammar compression is to find as small 
as possible a context free grammar (CFG) that uniquely 
produces the input string. Rules of such grammar can be 
further compressed with the appropriate codes, but that 
is another subject of research that we shall not discuss in 
this paper. Instead, we focus on the first part of the prob-
lem, finding the smallest CFG for a given string. A CFG is 
composed of production rules that replace repeated sub-
strings in text T . The optimal assignment of substrings for 
the replacement is an NP-hard problem [16], as a result, 
various greedy heuristics have been proposed: longest sub-
strings first [19], most frequent substrings first [20], and 
largest area first that finds the substrings that have the 
highest product of their length and the number of non-
overlapping occurrences [17]. In the general case, better 
compression results can be achieved with most frequent 
first and largest area first variants [18]. The longest first 
approach is particularly successful in finding long distant 
repeats, which is advantageous in applications involving 
long DNA sequences [19]. The grammar compressed strings 
support efficient searches without decompression [14] and 
grammar compression gives insight into the hierarchical 
structure of the text [18]. So far, there does not exist a lin-
ear time algorithm for largest area first method, but such 
algorithms exist for most frequent first [20] and for longest 
first substitutions [8]. The algorithm in [8] is based on the 
suffix tree and is the only linear time algorithm for this 
task. In this paper we present an algorithm that is based 
on the suffix array and that runs in time that is quadratic 
in the worst case but is in practice linear with the input 
text size.

2.1. Grammar text compression with longest first substitution

The longest first method at each iteration i replaces 
the longest repeated substrings in T with a new rule Ri . 

T: abcabcabdfabcabghabcabcab

R0: 1df2gh1
R1: 2c3
R2: 3c3
R3: ab

Fig. 1. An example of grammar compression with longest first substitution.

An example of the smallest CGF representing a text are 
the four rules in Fig. 1. R0 represents the original text T , 
and the rest of the rules represent the repeated substrings, 
from the longest to the shortest. The repeated string that 
can be replaced with a rule must be at least two characters 
long, and must occur at least twice in the CFG. Otherwise 
the total size of the CFG could increase with the respect to 
the original string.

The example in Fig. 1 presents a CFG where the sub-
strings repeated within rules are also replaced with the 
new rules. This variant of longest first substitution is re-
ferred to as LFS2 in [8], as opposed to LFS where rules are 
stored as the explicit substrings of T . Obviously, LFS2 vari-
ant provides more compression and this is the approach 
we address in this paper. The problem of longest first sub-
stitution is dynamic in the sense that at each iteration we 
have to find the longest repeated substring, replace its ev-
ery occurrence with a new rule, and then recalculate the 
positions of the new longest repetitions in case that the 
performed replacements have interfered with other repeti-
tions. This requires some sort of a dynamic index. If that 
index can be updated in constant time, we can perform the 
complete parsing of T in time linear with its length |T |. 
This is the approach taken in [8] where the authors show 
that their algorithm is the only one with truly linear time 
complexity. They achieve linearity by amortized constant 
time updates of nodes in a sparse lazy suffix tree. Updates 
of that sort are impossible in a suffix array in constant 
time, therefore we do not attempt to modify the array it-
self. Instead, we use two additional random access tables 
and base our algorithm on one observed property of the 
LCP-interval tree.

3. Longest first substitution using suffix array

Our algorithm uses a suffix array augmented with LCP-
interval tree data. The suffix array and the corresponding 
LCP-interval tree for the text from the example on Fig. 1
are presented in Fig. 2. Nodes in LCP-interval tree repre-
sent intervals in SA that correspond to suffixes of T with 
the same LCP value. These intervals are marked in Fig. 2, 
but only for LCP values of 2 or more. These are the in-
tervals we have to traverse during the execution of our 
algorithm.

In addition to SA and LCP-interval tree, we use two 
tables: s_t (substitution table), and arp_t (active rule po-
sition table), both with |T | elements. s_t is used to store 
rule labels and denote the positions of characters in T that 
have been substituted with a rule. Each position in s_t cor-
responds to a position in T . Let us denote with original
the otherwise unused value that we use to indicate that a 
character in T is not replaced with a rule. Similarly, with 
replaced we denote a value that we use to indicate that a 
character in T belongs to a substring that is replaced with 
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