
Information Processing Letters 115 (2015) 175–181

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Using static suffix array in dynamic application: Case of text

compression by longest first substitution

Strahil Ristov ∗, Damir Korenčić

Rud̄er Bošković Institute, Department of Electronics, Bijenička 54, 10000 Zagreb, Croatia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 May 2014
Received in revised form 11 July 2014
Accepted 22 August 2014
Available online 16 September 2014
Communicated by M. Chrobak

Keywords:
Algorithms
Enhanced suffix array
Grammar text compression
Longest first substitution
Text index update

Over the last decade, enhanced suffix arrays (ESA) have replaced suffix trees in many
applications. Algorithms based on ESAs require less space, while allowing the same time
efficiency as those based on suffix trees. However, this is only true when a suffix structure
is used as a static index. Suffix trees can be updated faster than suffix arrays, which is
a clear advantage in applications that require dynamic indexing. We show that for some
dynamic applications a suffix array and the derived LCP-interval tree can be used in such
a way that the actual index updates are not necessary. We demonstrate this in the case
of grammar text compression with longest first substitution and provide the source code.
The proposed algorithm has O (N2) worst case time complexity but runs in O (N) time in
practice.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It was shown in [1] that string algorithms based on a
suffix array (SA) enhanced with additional data structures
are equivalent regarding the execution time complexity
to those based on a suffix tree (ST), while requiring less
space. The suffix array can be enhanced with a choice of
additional data, such as the inverted suffix array, longest
common prefix (LCP) array, suffix link table, LCP-interval
tree, and interval child table. There exist a number of ef-
ficient algorithms for SA construction, both theoretically
linear and practically fast [2,3]. Efficient linear-time algo-
rithms also exist for the construction of the LCP array [4,5],
and all of the other data are easily derived from a suffix ar-
ray, or during its construction [1]. As a result, suffix arrays
has been successfully used to replace suffix trees in various
applications [6,7]. This is, however, only true for static ap-
plications. In cases when a dynamic update is needed the
suffix tree still has an advantage. A typical example of a

* Corresponding author.
E-mail addresses: ristov@irb.hr (S. Ristov), damir.korencic@irb.hr

(D. Korenčić).

dynamic application is text compression by substitution of
a repeated substring with a new symbol or with a pointer,
either to a previous occurrence in the string itself or to
an entry in an external dictionary. This poses a problem
of effective dynamic text indexing that has been addressed
mostly by modifications in ST construction. Dynamic text
indexing solves index updates after localized modifications
of the input string, i.e., after replacement of a single oc-
currence of a substring. The specific problem is a global
index update: a simultaneous substitution of multiple oc-
currences of a substring that, in particular, arises in the
field of grammar compression. So far, the only method for
a global update in (amortized) linear time is based on the
suffix tree [8].

A few papers have addressed the usage of suffix arrays
for dynamic indexing [9–11], even in the context of the
global updates [9], but their solutions do not attain linear
time complexity. In [11] authors show that the number of
steps necessary for an update of a suffix array is propor-
tional to the average LCP value LCPave . Since LCPave is much
smaller than the size of the text, updating SA is much
faster than rebuilding it from scratch. A fully dynamic in-
dex must support random access insertions and deletions

http://dx.doi.org/10.1016/j.ipl.2014.08.014
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.08.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:ristov@irb.hr
mailto:damir.korencic@irb.hr
http://dx.doi.org/10.1016/j.ipl.2014.08.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.08.014&domain=pdf

176 S. Ristov, D. Korenčić / Information Processing Letters 115 (2015) 175–181

(with a substitution as a combination thereof) and the
method presented in [11] supports both of them. In this
paper we show that, for a restricted problem of substitut-
ing parts of a string in predefined order, it is possible to
use the enhanced suffix array to perform global updates in
practically linear time. This result is based on the fact that
the sum of the depths of LCP-interval tree over all the po-
sitions in SA is in effect linear with respect to the size of
the input string. We have previously explored this fact in
the construction of a fast algorithm for the compression of
finite automata, based on the replacement of a repeated
substring with the pointer to a previous occurrence in the
string [12]. Here we demonstrate how this can be used to
solve another problem in string compression, specifically,
grammar text compression with longest first substitution.

2. Grammar text compression

The concept of context free grammar production rules
as a means of string compression was formalized in [13]
and has been known as the grammar text compression
since [14,15]. However, grammar text compression is only
a specific approach to the problem of compression by tex-
tual substitution [16,17] that has been addressed earlier
[17–19].

The idea of grammar compression is to find as small
as possible a context free grammar (CFG) that uniquely
produces the input string. Rules of such grammar can be
further compressed with the appropriate codes, but that
is another subject of research that we shall not discuss in
this paper. Instead, we focus on the first part of the prob-
lem, finding the smallest CFG for a given string. A CFG is
composed of production rules that replace repeated sub-
strings in text T . The optimal assignment of substrings for
the replacement is an NP-hard problem [16], as a result,
various greedy heuristics have been proposed: longest sub-
strings first [19], most frequent substrings first [20], and
largest area first that finds the substrings that have the
highest product of their length and the number of non-
overlapping occurrences [17]. In the general case, better
compression results can be achieved with most frequent
first and largest area first variants [18]. The longest first
approach is particularly successful in finding long distant
repeats, which is advantageous in applications involving
long DNA sequences [19]. The grammar compressed strings
support efficient searches without decompression [14] and
grammar compression gives insight into the hierarchical
structure of the text [18]. So far, there does not exist a lin-
ear time algorithm for largest area first method, but such
algorithms exist for most frequent first [20] and for longest
first substitutions [8]. The algorithm in [8] is based on the
suffix tree and is the only linear time algorithm for this
task. In this paper we present an algorithm that is based
on the suffix array and that runs in time that is quadratic
in the worst case but is in practice linear with the input
text size.

2.1. Grammar text compression with longest first substitution

The longest first method at each iteration i replaces
the longest repeated substrings in T with a new rule Ri .

T: abcabcabdfabcabghabcabcab

R0: 1df2gh1
R1: 2c3
R2: 3c3
R3: ab

Fig. 1. An example of grammar compression with longest first substitution.

An example of the smallest CGF representing a text are
the four rules in Fig. 1. R0 represents the original text T ,
and the rest of the rules represent the repeated substrings,
from the longest to the shortest. The repeated string that
can be replaced with a rule must be at least two characters
long, and must occur at least twice in the CFG. Otherwise
the total size of the CFG could increase with the respect to
the original string.

The example in Fig. 1 presents a CFG where the sub-
strings repeated within rules are also replaced with the
new rules. This variant of longest first substitution is re-
ferred to as LFS2 in [8], as opposed to LFS where rules are
stored as the explicit substrings of T . Obviously, LFS2 vari-
ant provides more compression and this is the approach
we address in this paper. The problem of longest first sub-
stitution is dynamic in the sense that at each iteration we
have to find the longest repeated substring, replace its ev-
ery occurrence with a new rule, and then recalculate the
positions of the new longest repetitions in case that the
performed replacements have interfered with other repeti-
tions. This requires some sort of a dynamic index. If that
index can be updated in constant time, we can perform the
complete parsing of T in time linear with its length |T |.
This is the approach taken in [8] where the authors show
that their algorithm is the only one with truly linear time
complexity. They achieve linearity by amortized constant
time updates of nodes in a sparse lazy suffix tree. Updates
of that sort are impossible in a suffix array in constant
time, therefore we do not attempt to modify the array it-
self. Instead, we use two additional random access tables
and base our algorithm on one observed property of the
LCP-interval tree.

3. Longest first substitution using suffix array

Our algorithm uses a suffix array augmented with LCP-
interval tree data. The suffix array and the corresponding
LCP-interval tree for the text from the example on Fig. 1
are presented in Fig. 2. Nodes in LCP-interval tree repre-
sent intervals in SA that correspond to suffixes of T with
the same LCP value. These intervals are marked in Fig. 2,
but only for LCP values of 2 or more. These are the in-
tervals we have to traverse during the execution of our
algorithm.

In addition to SA and LCP-interval tree, we use two
tables: s_t (substitution table), and arp_t (active rule po-
sition table), both with |T | elements. s_t is used to store
rule labels and denote the positions of characters in T that
have been substituted with a rule. Each position in s_t cor-
responds to a position in T . Let us denote with original
the otherwise unused value that we use to indicate that a
character in T is not replaced with a rule. Similarly, with
replaced we denote a value that we use to indicate that a
character in T belongs to a substring that is replaced with

Download English Version:

https://daneshyari.com/en/article/10331882

Download Persian Version:

https://daneshyari.com/article/10331882

Daneshyari.com

https://daneshyari.com/en/article/10331882
https://daneshyari.com/article/10331882
https://daneshyari.com

