
Information Processing Letters 115 (2015) 186–192

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Greedily computing associative aggregations on sliding 

windows ✩

David Basin a, Felix Klaedtke b, Eugen Zălinescu a,∗
a Institute of Information Security, ETH Zurich, Switzerland
b NEC Europe Ltd., Heidelberg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 May 2014
Received in revised form 24 July 2014
Accepted 14 September 2014
Available online 30 September 2014
Communicated by B. Doerr

Keywords:
Sliding window
Associative aggregation operator
On-line algorithms
Complexity
Optimality

We present an algorithm for combining the elements of subsequences of a sequence with 
an associative operator. The subsequences are given by a sliding window of varying size. 
Our algorithm is greedy and computes the result with the minimal number of operator 
applications.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Problem statement Let ⊕ : D × D → D be an associative 
operator over a nonempty set D . Consider a sequence ā =
(a1, . . . , an) of elements in D , with n ≥ 1. A window w in ā
is a pair (�w , rw) with 1 ≤ �w ≤ rw ≤ n. We call �w and rw

the w ’s left and right margin respectively. We omit the sub-
script w when it is unimportant or clear from the context. 
Moreover, we write ⊕w(ā) for a�w ⊕ a�w +1 ⊕ · · · ⊕ arw .

We consider the following problem in which the num-
ber of applications of the ⊕ operator should be minimized.

Input: A nonempty sequence ā of elements in D and a 
sequence w̄ = (w1, . . . , wk) of windows in ā, with 
�w1 ≤ �w2 ≤ · · · ≤ �wk and rw1 ≤ rw2 ≤ · · · ≤ rwk .

Output: The sequence (⊕w1 (ā), ⊕w2 (ā), . . . , ⊕wk (ā)).

✩ This work was partially supported by the Zurich Information Security 
and Privacy Center (ZISC).

* Corresponding author.

This minimization problem is motivated by settings 
where ⊕’s computation is expensive, for example, when 
multiplying large matrices, or when taking the union of 
large finite sets or determining their minimum. This prob-
lem arises, for example, when evaluating queries in system 
monitoring and stream processing, where ⊕ is used to ag-
gregate values on windows sliding over data streams.

A straightforward but suboptimal algorithm is to com-
pute ⊕wi (ā) for each window wi separately. It is easy to 
see that this algorithm applies the ⊕ operator 

∑k
i=1(rwi −

�wi ) times. One can do better by sharing intermediate re-
sults between overlapping windows as the following ex-
ample illustrates.

Example Let D be the domain N and ⊕ integer addi-
tion. For the sequence ā = (2, 4, 5, 2) and the window 
sequence w̄ = ((1, 3), (1, 4), (2, 4)), the output is the se-
quence (11, 13, 11). The straightforward algorithm applies 
the ⊕ operator 2 + 3 + 2 = 7 times. For this example, the 
minimal number of ⊕ applications is 3, since integer addi-
tion is associative and commutative and the windows w1

http://dx.doi.org/10.1016/j.ipl.2014.09.009
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.09.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
http://dx.doi.org/10.1016/j.ipl.2014.09.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.09.009&domain=pdf


D. Basin et al. / Information Processing Letters 115 (2015) 186–192 187

Fig. 1. Instance of the tree data structure used by the algorithm to store intermediate results.

and w3 contain the same integers. However, the minimal 
number is 4 if we just exploit the associativity of ⊕.

Obviously, when computing ⊕w2 (ā) we can reuse the 
result of the window w1, since ⊕w2 (ā) = ⊕w1 (ā) ⊕ a4. 
If we compute the intermediate result h := a3 ⊕ a4 when 
computing the result for the window w2, we could reuse 
it for the window w3, since ⊕w3 (ā) = a2 ⊕ h. Note that 
we do not have h as an intermediate result when com-
puting the results of the previous windows w1 and w2 as 
(a1 ⊕ a2) ⊕ a3 and ((a1 ⊕ a2) ⊕ a3) ⊕ a4, respectively. In 
case we compute the results of the windows w1 and w2
as a1 ⊕ (a2 ⊕ a3) and a1 ⊕ (a2 ⊕ (a3 ⊕ a4)), h is available 
for the result of the window w3. However, in this case, 
the computation of the result of the window w2 does not 
use the result of the first window. So how we parenthe-
size ai ⊕ ai+1 ⊕ · · · ⊕ a j is important when computing the 
result of a window. This choice has an impact on whether 
we can reuse intermediate results for other windows.

Contributions In this article, we present an efficient al-
gorithmic solution to this problem. Our algorithm, which 
we present in Section 2 and name SWA, processes the 
windows iteratively and reuses intermediate results from 
previously processed windows. SWA is greedy in the sense 
that it minimizes for each window the number of ⊕ ap-
plications. In Section 3 we prove SWA’s correctness and 
in Section 4 we show that it has linear running time in 
the length of the input sequence ā. In Section 5 we prove 
SWA’s optimality with respect to minimizing the number 
of ⊕ applications. We conclude in Section 6 by discussing 
applications and related work.

2. Algorithm

We present our sliding window algorithm SWA in a 
functional programming style, close to the OCaml pro-
gramming language [7].1 To simplify the exposition, we 
fix the associative operator ⊕ : D × D → D and the in-
put sequence ā = (a1, . . . , an), i.e., we treat ⊕ and ā as 
global variables. Our pseudo code can easily be modified 
so that ⊕ and ā are algorithm parameters. Furthermore, 

1 An OCaml implementation is provided as supplementary material on 
the publisher’s website.

we assume that we can access ā’s element at any posi-
tion i ∈ {1, . . . , n} in constant time.

SWA uses binary ordered trees to store and reuse inter-
mediate results, which are updated when iteratively pro-
cessing the window sequence w̄ . Fig. 1 shows the tree that 
SWA builds for the window w2 = (1, 4) for the input from 
the example in the introduction. Generally, the polymor-
phic datatype of these trees is

type ’a intermediate = ’a option node tree

where

type ’b node = {�: N; r: N; v : ’b}
type ’c tree =

| Leaf
| Node of (’c ∗ (’c tree) ∗ (’c tree))

Only the inner nodes of the trees are labeled (cf. the type 
definition of ’c tree). The content of an inner node (of the 
type ’b node), which we associate in the following to its 
subtree t , is a record whose field values are denoted by 
�t , rt , and vt , respectively. The field values �t and rt are 
elements of N, with 1 ≤ �t ≤ rt ≤ n. They describe the 
elements of ā that are covered by the tree t and their 
combination ⊕(�t ,rt )(ā) is the field value vt . If we know 
that the intermediate result ⊕(�t ,rt )(ā) is not reused later, 
SWA does not store it to reduce memory usage. In this case 
vt is actually None; otherwise, vt is Some ⊕(�t ,rt )(ā). We 
recall that the option type, used in the type definition of
’a intermediate, is defined as

type ’a option = None | Some of ’a

We lift the ⊕ operator in the canonical way to this ex-
tended domain. For t = Leaf, we define �t := rt := 0 and 
vt := None. Furthermore, we define the following function 
for extracting the children of a tree’s root:

fun children t = match t with
| Leaf → error "No children at leaf."
| Node (_, t′ , t′′) → (t′ , t′′)

We first define two basic auxiliary functions for creat-
ing and combining trees. The function atomic i builds the 
single-node tree t with �t = rt = i and vt = Some ai .

fun atomic i = Node ({� = i; r = i; v = Some ai }, Leaf, Leaf)

The function combine t′ t′′ builds the tree t with the left 
child t′ and the right child t′′ , provided neither t′ nor t′′ is 



Download English Version:

https://daneshyari.com/en/article/10331884

Download Persian Version:

https://daneshyari.com/article/10331884

Daneshyari.com

https://daneshyari.com/en/article/10331884
https://daneshyari.com/article/10331884
https://daneshyari.com

