
Information Processing Letters 115 (2015) 193–198

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Arbitrary sequence RAMs

Michael Brand

Faculty of IT, Monash University, Clayton, VIC 3800, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 October 2013
Received in revised form 14 September 
2014
Accepted 14 September 2014
Available online 21 September 2014
Communicated by A. Muscholl

Keywords:
Arbitrary number
Random Access Machine
Arithmetic complexity
Computational complexity
Theory of computation

It is known that in some cases a Random Access Machine (RAM) benefits from having 
an additional input that is an arbitrary number, satisfying only the criterion of being 
sufficiently large. This is known as the ARAM model. We introduce a new type of RAM, 
which we refer to as the Arbitrary Sequence RAM (ASRAM), that generalises the ARAM 
by allowing the generation of additional arbitrary large numbers at will during execution 
time. We characterise the power contribution of this ability under several RAM variants.
In particular, we demonstrate that an arithmetic ASRAM is more powerful than an 
arithmetic ARAM, that a sufficiently equipped ASRAM can recognise any language in the 
arithmetic hierarchy in constant time (and more, if it is given more time), and that, on the 
other hand, in some cases the ASRAM is no more powerful than its underlying RAM.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Random Access Machine, or RAM (see [1] for a 
formal definition) is a computational model that affords 
all that we expect from a modern computer in terms of 
flow control (loops, conditional jump instructions, etc.) and 
access to variables (direct and indirect addressing). It is 
denoted by RAM[op], where op is the set of operations 
that are assumed to be executable by the RAM in a sin-
gle unit of time each. A comparator for equality is also 
assumed to be available, and this also executes in a sin-
gle unit of time. The variables (or registers) of an integer 
RAM contain elements of Z∗ , the nonnegative integers, and 
are also indexable by addresses that are nonnegative inte-
gers.

To discuss the power of RAMs, let us consider RAMs 
as calculating functions. We initialise the RAM by storing 
the input value, inp, in the RAM’s R[0] register (setting 
all other registers to zero), and the output of the func-
tion is taken to be the value of R[0] at termination time. 
This definition can be extended to functions receiving any 

E-mail address: michael.brand@alumni.weizmann.ac.il.

fixed number of inputs. Alternatively, RAMs can be dis-
cussed as language acceptors, where inp is taken to be in 
the language if and only if the return value is non-zero. 
Traditionally, when viewing the RAM as an acceptor, non-
termination is taken to mean rejection of the input. By 
contrast, when viewing the RAM as a function calculator, 
non-termination is usually taken to mean that the RAM 
calculates a partial function, rather than a function. For 
simplicity of presentation we use the term “function” here 
also when referring to partial functions.

Ben-Amram and Galil [2] write “The RAM is intended to 
model what we are used to in conventional programming, 
idealized in order to be better accessible for theoretical 
study.” However, in practice, the RAM’s ability to manipu-
late very large numbers in constant time has been shown 
to reduce algorithmic complexities beyond what is usually 
considered “reasonable”. For example, it was shown re-
garding many RAMs working with fairly limited instruction 
sets that they are able to recognise any PSPACE problem in 
deterministic polynomial time [17,7,3,15], and a unit-cost 
RAM equipped only with arithmetic operations, Boolean 
operations and bit shifts can, in fact, recognise in constant 
time any language that is recognised by a TM in time 
and/or space constrained by any elementary function of 

http://dx.doi.org/10.1016/j.ipl.2014.09.010
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.09.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:michael.brand@alumni.weizmann.ac.il
http://dx.doi.org/10.1016/j.ipl.2014.09.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.09.010&domain=pdf


194 M. Brand / Information Processing Letters 115 (2015) 193–198

the input size [4], where, for the TM, ‘input size’ refers to 
the bit length of the input integer.

In most cases (e.g., [12,10,13,11,18,14]), the large inte-
gers to be efficiently manipulated by the RAM are gener-
ated to precise values that are conducive to the computa-
tion at hand. However, in other cases (e.g., [5,9,3]) some 
of the integers manipulated are arbitrary, subject only to 
the condition of being sufficiently large. We refer to such 
arbitrary large numbers as ALNs.

Recently, in [4], a general framework was proposed for 
the study of the power contribution of ALNs, this being 
the ARAM. An ARAM[op] program, rA , calculating a func-
tion from Z∗ to Z∗ , is defined by an underlying RAM[op]
program, r, that calculates a function from Z∗2 to Z∗ , in 
the following way.

We say that rA outputs t ∈ Z∗ on input inp ∈ Z∗ if there 
exists an N ∈ Z∗ such that for any A > N the output of 
r on (inp, A) is t , independent of A, and such that the 
execution time of r on input (inp, x) is bounded over all 
choices of x (including x values not larger than the cho-
sen N). When this is the case, we say that the execution 
time of rA on inp is the execution time of r on (inp, x) with 
the worst-case choice of x. In all other cases, rA is said not 
to terminate.

The RAM r’s second input parameter is said to be the 
ARAM’s ALN parameter. The underlying RAM is able to 
compute the same function as the ARAM, and at least as 
quickly, if it is given as its second input a value, A, that is 
in a set {x : x > N}, for an appropriately-chosen N . Let us 
therefore define any set of the form {x : x > N} for any N
to be an “ALN set”.

We now introduce a new computational model which 
generalises the ARAM, this being the Arbitrary Sequence 
RAM (ASRAM). To define the ASRAM, let us first generalise 
and formalise the notion of the ALN set as it pertains to 
ASRAMs. For this purpose, we define the Arbitrary Large 
Sequence (ALS) set.

Definition 1 (ALS set). An Arbitrary Large Sequence (ALS) set
is a nonempty set of (infinite) integer sequences, S, such 
that for any i and any sequence {Ak} ∈ S there exists a 
sequence {Bk} ∈ S such that Bi = Ai + 1, and if j < i, then 
B j = A j .

The definition of the ALS set is such that if any finite 
list of integers appears as a prefix of any sequence in S, the 
last integer can be increased by 1 (and, by induction, can 
be replaced by any larger number), and the result would 
still be a prefix of a sequence in S. This being the case, any 
finite list of integers appearing as a prefix of any sequence 
in S remains a prefix in S if one extends it by another 
element, given that this element exceeds some threshold 
value. Other than being “large enough”, the new element 
can be chosen arbitrarily.

Definition 2 (ASRAM). An ASRAM is a computational model 
that provides the same functionality as the RAM, but also 
allows calls to a function, “ALN()”, that returns integers.

An ASRAM is said to output t ∈ Z∗ on input inp ∈ Z∗ if 
there exists an ALS set, S = S(inp), such that for all {Ai} ∈ S, 

if the i’th invocation of ALN() is replaced by the constant 
Ai then the resulting RAM outputs t on input inp.1

The run time of the ASRAM on a given inp is the run 
time of the underlying RAM with the worst-case choice 
of {Ai} ∈ Z∗ω (regardless of whether this Ai is in S for 
any ALS set S). If this worst-case is unbounded, the AS-
RAM is taken to be non-terminating and does not produce 
any output, even if the condition of the previous paragraph 
holds.

This definition reflects a situation where every applica-
tion of ALN() returns a number that is arbitrary other than 
being sufficiently large with respect to everything that oc-
curred in earlier steps of the ASRAM’s execution.

The ASRAM can be used to investigate a scenario in 
which an unbounded number of ALNs are required. How-
ever, we can also use it for the intermediate scenario, 
where only a predefined number (e.g. 2) of ALNs are avail-
able to the algorithm. This is simply done by limiting the 
number of times the ALN() function can be invoked. The 
original ARAM is an ASRAM limited to use ALN() at most 
once.

2. Arithmetic complexity

At face value, one may believe that multiple arbitrary 
numbers are no more powerful than a single arbitrary 
number. However, this is not so.

In this section we show that the extra power of ar-
bitrary sequences is present already in the traditional 
arithmetic complexity model, this being the computa-
tional model in which the basic operations used are the 
four arithmetic functions, {+, , ×, ÷}, where a b def=
max(a − b, 0) and “÷” is integer division. We also use 
“mod” freely in the arithmetic model, because it is an 
operation straightforward to simulate using the available 
operations.

We stress that despite use of the name “arithmetic”, the 
results presented rely heavily on the non-arithmetic nature 
of “÷”. In the literature [9], this operation is, in fact, some-
times referred to as non-arithmetic division.

Formally stated, what we prove is the following theo-
rem.

Theorem 1. The class of functions that can be computed in poly-
nomial time by an arithmetic ASRAM is strictly larger than the 
class of functions that can be computed in polynomial time by 
an arithmetic ARAM.

Note that complexity, for RAMs, is measured against the 
bit-length of their input integers.

To prove Theorem 1, consider first the following lemma.

1 “ALN()” is a “function” only in the formal sense that it can appear in 
the code of an ASRAM in places where, for a RAM, one would expect a 
function receiving zero parameters and returning an integer. ALN is not a 
function that can actually be computed. Furthermore, it is multi-valued, 
in the sense that each time it is invoked it returns a new Ai , despite the 
fact that it is always called with the same (empty) set of parameters.



Download English Version:

https://daneshyari.com/en/article/10331885

Download Persian Version:

https://daneshyari.com/article/10331885

Daneshyari.com

https://daneshyari.com/en/article/10331885
https://daneshyari.com/article/10331885
https://daneshyari.com

