
Information Processing Letters 115 (2015) 212–220

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A ground-complete axiomatization of stateless bisimilarity

over Linda ✩

Luca Aceto a,b,∗, Eugen-Ioan Goriac c, Anna Ingolfsdottir a

a ICE-TCS, School of Computer Science, Reykjavik University, Menntavegur 1, IS 101 Reykjavik, Iceland
b Gran Sasso Science Institute, INFN, Viale F. Crispi 7, 67100 L’Aquila, Italy
c Icelandic Heart Association, Holtasmári 1, IS 201 Kópavogur, Iceland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 June 2013
Received in revised form 16 May 2014
Accepted 15 September 2014
Available online 22 September 2014
Communicated by J.L. Fiadeiro

Keywords:
Concurrency
Process algebra
Stateless bisimilarity
Linda
Equational logic

This paper offers a finite, ground-complete axiomatization of stateless bisimilarity over
the tuple-space-based coordination language Linda. As stepping stones towards that result,
axiomatizations of stateless bisimilarity over the sequential fragment of Linda without the
nask primitive, and over the full sequential sub-language are given. It is also shown that
stateless bisimilarity coincides with standard bisimilarity over the sequential fragment of
Linda without the nask primitive.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The goal of this paper is to contribute to the study of
equational axiomatizations of behavioural equivalences for
processes with data—see, e.g., the references [14,18–20] for
earlier contributions to this line of research. Specifically,
we present a ground-complete axiomatization of stateless
bisimilarity from [8,12,17,24] over the well-known, tuple-
space-based coordination language Linda [11,15].

Linda is a, by now classic, example from a family of co-
ordination languages that focus on the explicit control of

✩ The authors have been partially supported by the projects ‘Meta-
theory of Algebraic Process Theories’ (nr. 100014021) and ‘Nominal Struc-
tural Operational Semantics’ (nr. 141558-051) of the Icelandic Research
Fund. Eugen-Ioan Goriac was also funded by the project ‘Extending
and Axiomatizing Structural Operational Semantics: Theory and Tools’
(nr. 1102940061) of the Icelandic Research Fund.

* Corresponding author at: ICE-TCS, School of Computer Science, Reyk-
javik University, Menntavegur 1, IS 101 Reykjavik, Iceland.

E-mail addresses: luca@ru.is (L. Aceto), eugen.goriac@me.com
(E.-I. Goriac), annai@ru.is (A. Ingolfsdottir).

interactions between parallel processes. (More modern co-
ordination languages are Reo [2] and BIPL [5,7].) A commu-
nication between Linda processes takes place by accessing
tuples in a shared memory, called the tuple space, which
is a multiset of tuples. The communication mechanism in
Linda is asynchronous, in that send operations are non-
blocking. Our presentation of the syntax and the semantics
of Linda follows those given in [9,24].

In the light of its intuitive appeal and impact, Linda has
received a fair amount of attention within the concurrency
theory community. For instance, the relative expressive
power of fragments of Linda has been studied in [9] and
the paper [14] studies testing semantics, in the sense of De
Nicola and Hennessy [13], over applicative and imperative
process algebras that are inspired by Linda. The paper [13]
also provides complete inequational axiomatizations of the
studied calculi with respect to testing semantics.

Testing semantics can be viewed as the most natural
notion of behavioural equivalence for a language from the
programmer’s perspective. Indeed, it is the formalization
of the motto that ‘two program fragments should be con-
sidered equivalent unless there is a context/test that tells

http://dx.doi.org/10.1016/j.ipl.2014.09.014
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.09.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:luca@ru.is
mailto:eugen.goriac@me.com
mailto:annai@ru.is
http://dx.doi.org/10.1016/j.ipl.2014.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.09.014&domain=pdf

L. Aceto et al. / Information Processing Letters 115 (2015) 212–220 213

them apart.’ Testing semantics is, however, not very robust.
In particular, if one extends a language with new features
that increase the observational power of tests, the resulting
notion of ‘testing equivalence’ for the extended language
will be finer than the one for the original language. This
means that the results one had worked hard to establish
for the original language will have to be established anew.

Stateless bisimilarity [8,12,17,24] is a variation on the
classic notion of bisimilarity [21,25] that is suitable for rea-
soning compositionally about open, concurrent and state-
bearing systems. It is the finest notion of bisimilarity for
state-bearing processes that one can find in the literature
and comes equipped with a congruence rule format for
operational rules [24]. It is therefore interesting to study
its equational theory in the setting of a seminal language
like Linda, not least because equational axiomatizations of
stateless bisimilarity may form the core of axiom systems
for coarser notions of equivalence over that language.

The main contribution of this paper is a ground-
completeness result for stateless bisimilarity over Linda
given in Section 3. We first present a complete axiom sys-
tem for stateless bisimilarity over the sequential fragment
of Linda without the nask primitive, which tests for the
absence of a tuple in the tuple space (Theorem 3.2). In-
terestingly, it turns out that stateless bisimilarity over this
fragment of Linda has the same axiomatization of standard
bisimilarity, when the considered sub-language of Linda is
viewed as Basic Process Algebra (BPA) with deadlock and
the empty process [26]. We formalize the connection be-
tween the two languages and their respective semantics,
culminating in Theorem 3.4.

Next we offer a ground-complete axiomatization of
stateless bisimilarity over the full sequential fragment of
Linda (Section 3.1). In this setting, we have to deal with the
subtle interplay of ask and nask primitives, which test for
the presence and absence of some tuple in the tuple space,
respectively. In Theorem 3.5, we show that two equation
schemas are enough to capture equationally the effect that
combinations of ask and nask primitives may have on the
behaviour of Linda terms.

Following rather standard lines, we give a ground-
complete axiomatization of stateless bisimilarity over the
full Linda language we consider in this paper in Sec-
tion 3.2.

We end the paper by comparing our work with that
presented in [10] (Section 4), as well as with some con-
cluding remarks and suggestions for future research (Sec-
tion 5).

2. Preliminaries

In this section we present the syntax and operational
semantics for the classic, tuple-space-based coordination
language Linda [11,15]. (Our presentation follows those
given in [9,24].) Moreover, we introduce the notion of
stateless bisimilarity and the basic definitions from equa-
tional logic used in this paper.

Linda’s signature ΣD for data (the so-called tuple
space) consists of the constant ∅ for the empty tuple space,
a (possibly infinite) set U of constants standing for mem-
ory tuples and a binary separator _ _ that is associative

and commutative, but not idempotent, and has ∅ as left
and right unit. (The store is a multiset of tuples.) The set
T (ΣD) of closed data terms is given, therefore, by the fol-
lowing BNF grammar:

d ::= ∅ | u | d d,

where u ∈ U . Each data term d determines a multiset
{u1, . . . , uk} of tuples in the obvious way. In what follows,
we write u ∈ d when there is at least one occurrence of
the tuple u in the multiset denoted by d.

Following [9], the signature ΣP for Linda is implicitly
given by the BNF grammar defining the set T(ΣP) of open
process terms over a countably infinite set V P of process
variables:

t ::= x | δ | ε | ask(u) | nask(u) | tell(u) | get(u)

| t + t | t; t | t ‖ t,

where x ∈ V P and u ∈ U . Closed terms are terms without
occurrences of variables. The set of closed process terms is
denoted by T (ΣP). A substitution σ is a function of type
V P → T(ΣP). A closed substitution is a substitution whose
range is included in T (ΣP). We write σ(t) for the term
resulting by replacing each occurrence of a variable x in t
with the term σ(x). Note that σ(t) is a closed term when-
ever σ is a closed substitution.

Intuitively, δ is a constant process that symbolizes
deadlock, which satisfies no predicates and performs no
actions. The constant ε denotes a process that satisfies the
successful termination predicate, denoted by ↓ in what fol-
lows, and performs no action. The constants ask, nask, tell,
and get are the basic Linda instructions for operating with
the data component. ask(u) and nask(u) check whether tu-
ple u is and, respectively, is not in the store. tell(u) adds
tuple u to the store, while get(u) removes one of its oc-
currences if it is present. The ask(u), get(u) and nask(u)

operations are blocking, in the sense that a process exe-
cuting them blocks if u is not in the tuple space for ask
and get, and if it is in the tuple space for nask. The oper-
ations _ + _, _; _ and _ ‖ _ are, respectively, the standard
alternative, sequential and interleaving parallel composi-
tion operations familiar from process algebras—see, for
instance, [3].

Definition 2.1 (Transition System Specification for Linda). The
operational semantics of Linda is given in terms of a unary
immediate termination predicate ↓ and a binary transition
relation → over configurations of the form (p, d), with p ∈
T (ΣP) and d ∈ T (ΣD). Intuitively, (p, d) ↓ means that the
process term p can terminate immediately in the context
of the tuple space d, whereas

(p,d) → (
p′,d′)

indicates that the configuration (p, d) can evolve into
(p′, d′) in one computational step. Formally, ↓ and → are
the least relations over configurations satisfying the follow-
ing set of rules.

(ε,d) ↓
(x,d) ↓

(x + y,d) ↓
(y,d) ↓

(x + y,d) ↓

Download English Version:

https://daneshyari.com/en/article/10331889

Download Persian Version:

https://daneshyari.com/article/10331889

Daneshyari.com

https://daneshyari.com/en/article/10331889
https://daneshyari.com/article/10331889
https://daneshyari.com

