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This paper offers a finite, ground-complete axiomatization of stateless bisimilarity over 
the tuple-space-based coordination language Linda. As stepping stones towards that result, 
axiomatizations of stateless bisimilarity over the sequential fragment of Linda without the 
nask primitive, and over the full sequential sub-language are given. It is also shown that 
stateless bisimilarity coincides with standard bisimilarity over the sequential fragment of 
Linda without the nask primitive.
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1. Introduction

The goal of this paper is to contribute to the study of 
equational axiomatizations of behavioural equivalences for 
processes with data—see, e.g., the references [14,18–20] for 
earlier contributions to this line of research. Specifically, 
we present a ground-complete axiomatization of stateless 
bisimilarity from [8,12,17,24] over the well-known, tuple-
space-based coordination language Linda [11,15].

Linda is a, by now classic, example from a family of co-
ordination languages that focus on the explicit control of 
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interactions between parallel processes. (More modern co-
ordination languages are Reo [2] and BIPL [5,7].) A commu-
nication between Linda processes takes place by accessing 
tuples in a shared memory, called the tuple space, which 
is a multiset of tuples. The communication mechanism in 
Linda is asynchronous, in that send operations are non-
blocking. Our presentation of the syntax and the semantics 
of Linda follows those given in [9,24].

In the light of its intuitive appeal and impact, Linda has 
received a fair amount of attention within the concurrency 
theory community. For instance, the relative expressive 
power of fragments of Linda has been studied in [9] and 
the paper [14] studies testing semantics, in the sense of De 
Nicola and Hennessy [13], over applicative and imperative 
process algebras that are inspired by Linda. The paper [13]
also provides complete inequational axiomatizations of the 
studied calculi with respect to testing semantics.

Testing semantics can be viewed as the most natural 
notion of behavioural equivalence for a language from the 
programmer’s perspective. Indeed, it is the formalization 
of the motto that ‘two program fragments should be con-
sidered equivalent unless there is a context/test that tells 

http://dx.doi.org/10.1016/j.ipl.2014.09.014
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.09.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:luca@ru.is
mailto:eugen.goriac@me.com
mailto:annai@ru.is
http://dx.doi.org/10.1016/j.ipl.2014.09.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.09.014&domain=pdf


L. Aceto et al. / Information Processing Letters 115 (2015) 212–220 213

them apart.’ Testing semantics is, however, not very robust. 
In particular, if one extends a language with new features 
that increase the observational power of tests, the resulting 
notion of ‘testing equivalence’ for the extended language 
will be finer than the one for the original language. This 
means that the results one had worked hard to establish 
for the original language will have to be established anew.

Stateless bisimilarity [8,12,17,24] is a variation on the 
classic notion of bisimilarity [21,25] that is suitable for rea-
soning compositionally about open, concurrent and state-
bearing systems. It is the finest notion of bisimilarity for 
state-bearing processes that one can find in the literature 
and comes equipped with a congruence rule format for 
operational rules [24]. It is therefore interesting to study 
its equational theory in the setting of a seminal language 
like Linda, not least because equational axiomatizations of 
stateless bisimilarity may form the core of axiom systems 
for coarser notions of equivalence over that language.

The main contribution of this paper is a ground-
completeness result for stateless bisimilarity over Linda 
given in Section 3. We first present a complete axiom sys-
tem for stateless bisimilarity over the sequential fragment 
of Linda without the nask primitive, which tests for the 
absence of a tuple in the tuple space (Theorem 3.2). In-
terestingly, it turns out that stateless bisimilarity over this 
fragment of Linda has the same axiomatization of standard 
bisimilarity, when the considered sub-language of Linda is 
viewed as Basic Process Algebra (BPA) with deadlock and 
the empty process [26]. We formalize the connection be-
tween the two languages and their respective semantics, 
culminating in Theorem 3.4.

Next we offer a ground-complete axiomatization of 
stateless bisimilarity over the full sequential fragment of 
Linda (Section 3.1). In this setting, we have to deal with the 
subtle interplay of ask and nask primitives, which test for 
the presence and absence of some tuple in the tuple space, 
respectively. In Theorem 3.5, we show that two equation 
schemas are enough to capture equationally the effect that 
combinations of ask and nask primitives may have on the 
behaviour of Linda terms.

Following rather standard lines, we give a ground-
complete axiomatization of stateless bisimilarity over the 
full Linda language we consider in this paper in Sec-
tion 3.2.

We end the paper by comparing our work with that 
presented in [10] (Section 4), as well as with some con-
cluding remarks and suggestions for future research (Sec-
tion 5).

2. Preliminaries

In this section we present the syntax and operational 
semantics for the classic, tuple-space-based coordination 
language Linda [11,15]. (Our presentation follows those 
given in [9,24].) Moreover, we introduce the notion of 
stateless bisimilarity and the basic definitions from equa-
tional logic used in this paper.

Linda’s signature ΣD for data (the so-called tuple 
space) consists of the constant ∅ for the empty tuple space, 
a (possibly infinite) set U of constants standing for mem-
ory tuples and a binary separator _ _ that is associative 

and commutative, but not idempotent, and has ∅ as left 
and right unit. (The store is a multiset of tuples.) The set 
T (ΣD) of closed data terms is given, therefore, by the fol-
lowing BNF grammar:

d ::= ∅ | u | d d,

where u ∈ U . Each data term d determines a multiset 
{u1, . . . , uk} of tuples in the obvious way. In what follows, 
we write u ∈ d when there is at least one occurrence of 
the tuple u in the multiset denoted by d.

Following [9], the signature ΣP for Linda is implicitly 
given by the BNF grammar defining the set T(ΣP ) of open 
process terms over a countably infinite set V P of process 
variables:

t ::= x | δ | ε | ask(u) | nask(u) | tell(u) | get(u)

| t + t | t; t | t ‖ t,

where x ∈ V P and u ∈ U . Closed terms are terms without 
occurrences of variables. The set of closed process terms is 
denoted by T (ΣP ). A substitution σ is a function of type 
V P → T(ΣP ). A closed substitution is a substitution whose 
range is included in T (ΣP ). We write σ(t) for the term 
resulting by replacing each occurrence of a variable x in t
with the term σ(x). Note that σ(t) is a closed term when-
ever σ is a closed substitution.

Intuitively, δ is a constant process that symbolizes 
deadlock, which satisfies no predicates and performs no 
actions. The constant ε denotes a process that satisfies the 
successful termination predicate, denoted by ↓ in what fol-
lows, and performs no action. The constants ask, nask, tell, 
and get are the basic Linda instructions for operating with 
the data component. ask(u) and nask(u) check whether tu-
ple u is and, respectively, is not in the store. tell(u) adds 
tuple u to the store, while get(u) removes one of its oc-
currences if it is present. The ask(u), get(u) and nask(u)

operations are blocking, in the sense that a process exe-
cuting them blocks if u is not in the tuple space for ask
and get, and if it is in the tuple space for nask. The oper-
ations _ + _, _; _ and _ ‖ _ are, respectively, the standard 
alternative, sequential and interleaving parallel composi-
tion operations familiar from process algebras—see, for 
instance, [3].

Definition 2.1 (Transition System Specification for Linda). The 
operational semantics of Linda is given in terms of a unary 
immediate termination predicate ↓ and a binary transition 
relation → over configurations of the form (p, d), with p ∈
T (ΣP ) and d ∈ T (ΣD). Intuitively, (p, d) ↓ means that the 
process term p can terminate immediately in the context 
of the tuple space d, whereas

(p,d) → (
p′,d′)

indicates that the configuration (p, d) can evolve into 
(p′, d′) in one computational step. Formally, ↓ and → are 
the least relations over configurations satisfying the follow-
ing set of rules.

(ε,d) ↓
(x,d) ↓

(x + y,d) ↓
(y,d) ↓

(x + y,d) ↓
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