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Data fusion in time domain is sequential and dynamic. Methods to deal with evidence 
conflict in spatial domain may not suitable in temporal domain. It is significant to 
determine the dynamic credibility of evidence in time domain. The Markovian requirement 
of time domain fusion is analyzed based on Dempster’s combination rule and evidence 
discount theory. And the credibility decay model is presented to get the dynamic evidence 
credibility. Then the evidence is discounted by dynamic discount factor. It’s illustrated that 
such model can satisfied the requirement of data fusion in time domain. Proper and solid 
decision can be made by this approach.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Dempster–Shafer theory of evidence, also called be-
lief function theory, is an important method to deal with 
uncertainty in information systems. Since it was firstly pre-
sented by Dempster [1], and was later extended and re-
fined by Shafer [2], the Dempster–Shafer theory, or the 
D–S theory for short, has generated considerable interest. 
Its application has extended to many areas such as expert 
systems, diagnosis and reasoning, pattern classification, in-
formation fusion, and data mining.

However, illogical results may be obtained by classi-
cal Dempster’s combination rule when collected evidence 
highly conflicts each other. Many methods have been pro-
posed to solve this problem, one of which is to modify 
the evidence. Evidence discounting and evidence averag-
ing are typical methodologies to modify the evidence. The 
reliability of a source of information is classically taken 
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into account by the discounting operation, which trans-
forms a belief function into a weaker, less informative one. 
This operation is usually important in uncertain informa-
tion management.

Most of previous research about evidence theory is car-
ried out in spatial domain, where all the evidence bodies 
are combined simultaneously. This can be seen as a static 
fusion. However, influenced by noisy and the reliability of 
sensors, readings of sensors in one time period are not re-
liable enough for information fusion. So information from 
multiple periods is necessary for better fusion result. Thus 
temporal information fusion, also called dynamic fusion, 
is crucial to many applications. In dynamic fusion, belief 
functions are collected sequentially one by one. It is mean-
ingless to combine all the belief functions after they were 
collected. Temporal fusion is sequential and dynamic, rep-
resented by the inheritance and update in fusion result.

In spatial evidence combination, belief functions are 
discounted or averaged by the credibility degrees or dis-
counting factors obtained by analyzing the relationship 
between all belief functions. However, this method can-
not make sense in temporal combination, where belief 
functions are not collected simultaneously. So how to de-
termine the discount factor in temporal evidence fusion 
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has received much attention. Although this problem has 
been addressed in [3], further mathematical implication 
and physical application are necessary for better implo-
ration on the temporal evidence combination. Based on the 
time decay model proposed by Smets in [3], we give the 
definition of credibility decay model for evidence discount-
ing in time domain, providing an alternative to analyzing 
and combining sequential evidences.

In the rest of this paper, background knowledge on ev-
idence theory is briefly recalled firstly. Then the credibility 
decay model (CDM) is then presented after analysis on 
Markovian requirement of evidence combination rule in 
temporal domain based on the sequential characteristic of 
dynamic fusion. Finally, numerical simulation is carried out 
to illustrate the performance of proposed model.

2. Preliminaries

Dempster–Shafer theory of evidence was modeled based 
on a finite set of mutually exclusive elements, called the 
frame of discernment denoted by Ω [1]. The power set 
of Ω , denoted by 2Ω , contains all possible unions of the 
sets in Ω including Ω itself. Singleton sets in a frame of 
discernment Ω will be called atomic sets because they do 
not contain nonempty subsets. The following definition is 
central in the Dempster–Shafer theory.

Definition 1. Let Ω = {A1, A2, · · · , An} be the frame of dis-
cernment. A basic probability assignment (BPA) is a func-
tion m: 2Ω → [0, 1], satisfying the two following condi-
tions:

m(∅) = 0 (1)∑
A⊆Ω

m(A) = 1 (2)

where ∅ denotes empty set, and A is any subset of Ω . 
Such a function is also called a basic belief assignment by 
Smets [4], and a belief structure (BS) by Yager [5]. The ter-
minology of belief function will be adopted in this paper. 
For each subset A ⊆ Ω , the value taken by the BPA at A is 
called the basic probability assigned to A, or the BPA of A
for short, denoted by m(A).

Definition 2. A subset A of Ω is called the focal element 
of a belief function m if m(A) > 0.

Definition 3. Given a belief function m on Ω , the belief 
function and plausibility function which are in one-to-one 
correspondence with m can be defined respectively as:

Bel(A) =
∑
B⊆A

m(B) (3)

Pl(A) =
∑

B∩A �=∅
m(B) = 1 −

∑
B∩A=∅

m(B) (4)

Definition 4. (See [4].) The pignistic transformation maps a 
belief function m to so called pignistic probability function. 
The pignistic transformation of a belief function m on Ω =
{A1, A2, · · · , An} is given by

BetP(A) =
∑
B⊆Ω

|A ∩ B|
|B|

m(B)

1 − m(∅)
, ∀A ⊆ Ω (5)

where |A| is the cardinality of set A.
In a particular case where m(∅) = 0 and A ∈ Ω , i.e., A is 

a singleton of Ω , we have

BetP(A) =
∑
A∈B

m(B)

|B| , A = A1, . . . , An, B ⊆ Ω (6)

Definition 5. Given two belief functions m1 and m2 on Ω , 
the belief function that results from the application of 
Dempster’s combination rule, denoted as m1 ⊕ m2, or m12
for short, is given by:

m1 ⊕ m2(A) =
{ ∑

B∩C=A m1(B)m2(C)

1−∑
B∩C=∅ m1(B)m2(C)

, A ⊆ Ω, A �= ∅
0, A = ∅

(7)

Definition 6. Let m be the BPA on the discriminant 
frame Ω . It is produced by a sensor S , with a reliability 
of α, α ∈ [0, 1]. Then m can be discounted as [2]:

mα(A) =
{

αm(A), A �= Ω

1 − α + αm(A), A = Ω
(8)

Definition 7. The vacuous belief function on Ω is a cate-
gorical belief function focused on Ω , i.e. m(Ω) = 1. It is 
denoted VBF.

VBF means full ignorance on Ω . As for Dempster 
combination rule, we can easily get: m ⊕ VBF = m or 
f (m, VBF) = m.

Eq. (8) also indicates that, mα(A) → VBF for α → 0, and 
m0 = VBF. This means that the information provided by an 
unreliable sensor is total ignorance.

Lemma 1. VBFα = VBF.

Proof. Let A = Ω and m(A) = 1, given Eq. (8) we can get: 
mα(A) = 1 − α + α = 1 = m(A). �
Lemma 2. Let m be BPA on Ω, α1, α2 ∈ [0, 1], then (mα1)α2 =
mα1α2 .

Proof. Given Eq. (8), we have mα1(A) =
{

α1m(A), A �=Ω,

1−α1+α1m(A), A=Ω.

For A �= Ω:

(
mα1

)α2
(A) = α2 · (α1m(A)

)
= α1α2m(A) = mα1α2(A).

For A = Ω:

(
mα1

)α2
(A) = α2 · (1 − α1 + α1m(A)

) + 1 − α2

= 1 − α1α2 + α1α2m(A) = mα1α2(A). �
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