A new lower bound for the number of perfect matchings of line graph

Xue Zhou
Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China

A R T I C L E I N F O

Article history:

Received 11 June 2014
Received in revised form 23 September 2014
Accepted 24 September 2014
Available online 5 October 2014
Communicated by Jinhui Xu

Keywords:

Combinatorial problems
Enumeration
Perfect matching
Line graph
2-Connected graph

Abstract

Let $G=(V, E)$ be a graph, $V(G)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ and $|E|$ be even. In this paper, we show that $M(L(G)) \geq 2^{|E|-|V|+1}+\sum_{i=1}^{n}\left(f_{G}\left(u_{i}\right)+g_{G}\left(u_{i}\right)\right)!!-n$, where $f_{G}\left(u_{i}\right)=d_{G}\left(u_{i}\right)-w\left(G-u_{i}\right)$, $w\left(G-u_{i}\right)$ is the number of components of $G-u_{i}, g_{G}\left(u_{i}\right)$ is the number of those components of $G-u_{i}$ each of which has an even number of edges, and $M(L(G))$ is the number of perfect matchings of the line graph $L(G)$. Also we show that $M(L(G)) \geq$ $\eta(\Delta) \cdot 2^{|E|-|V|-\Delta+2}$ for every 2 -connected graph G, and give a sufficient and necessary condition about 2 -connected graphs G such that $M(L(G))=\eta(\Delta) \cdot 2^{|E|-|V|-\Delta+2}$, where $\eta(\Delta)=\sum_{0 \leq k \leq \Delta / 2}\binom{\Delta}{2 k}(2 k)!!, \Delta$ is the maximum degree of G, and $(2 k)!!=(2 k-1)(2 k-$ 3) $\cdots 3 \cdot 1$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The enumeration problems for maximum matchings and perfect matchings of a graph play an important role in graph theory and combinatorial optimization and have a wide applications in some field. For example, in the chemical field, the number of perfect matchings of bipartite graphs corresponds to Kekulé structures number (see [4]). In physical field, the Dimer problem is essentially equal to the number of perfect matchings of a graph (see [5]). The number of perfect matchings is an important topological index which had been applied for estimation of the resonant energy, total π-electron energy and calculation of Pauling bond order (see [6]). But the enumeration problem for perfect matchings in general graphs (even in bipartite graphs) is NP-hard (see [3,7]). So far, many mathematicians, physicists and chemists have given most of their attention to counting perfect matchings of graphs (see [1,4,8-10]).

[^0]Sumner [11] showed that every connected claw-free graph with an even number of vertices has a perfect matching. Since every line graph is claw-free, the line graph of a connected graph with an even number of edges has a perfect matching.

Dong and Yan showed that $M(L(G)) \geq 2^{|E(G)|-|V(G)|+1}$ for every connected graph G, and also obtained the sufficient and necessary condition about the connected graphs G such that $M(L(G))=2^{|E(G)|-|V(G)|+1}$ (see [1]). In this paper, we show that $M(L(G)) \geq 2^{|E|-|V|+1}+$ $\sum_{i=1}^{n}\left(f_{G}\left(u_{i}\right)+g_{G}\left(u_{i}\right)\right)!!-n$, and also give a sufficient and necessary condition about 2-connected graphs G such that $M(L(G))=\eta(\Delta) \cdot 2^{|E|-|V|-\Delta+2}$.

2. Definitions and preliminaries

The graphs considered in this paper are finite, undirected and simple graphs. For some notations and definitions undefined here, see [2].

Let $G=(V, E)$ be a graph, the degree of v is denoted by $d_{G}(v)$ for $v \in V, E_{V}$ be the set of edges in G which are incident with v. Then $\left|E_{v}\right|=d_{G}(v)$. A vertex v is called a leaf of G if $d_{G}(v)=1$.

The line graph of a graph G, denoted by $L(G)$, is defined as the graph with $V(L(G))=E(G)$ such that any two vertices e and f of $L(G)$ are adjacent if e and f has a common end in G.

An edge subset $M \subseteq E(G)$ is a matching of G if no two edges in M are incident with a common vertex. A matching M of G is a perfect matching if every vertex of G is incident with an edge in M. The number of all perfect matchings of G is denoted by $M(G)$. It is obvious that if G is a complete graph with n vertices, where n is even, then $M(G)=(n-1)(n-3) \cdots 3 \cdot 1$.

For any graph G, let $w(G)$ be the number of components of $G, p(G)$ be the number of those components of G each of which has an even number of edges. If G is a forest, $p(G)$ and $|V(G)|$ have the same parity. Thus, if G is a tree and $|V(G)|$ is odd, then $p(G-v)$ is even for all $v \in V(G)$.

Proposition 1. (See [1].) Let T be a tree with $V(T)=\left\{v_{1}, v_{2}\right.$, $\left.\cdots, v_{n}\right\}$, where $n>1$ is odd. Then
$M(L(T))=\prod_{i=1}^{n} p\left(T-v_{i}\right)!!$,
where $(2 k)!!=(2 k-1)!!=(2 k-1)(2 k-3) \cdots 3 \cdot 1$ for any non-negative integer k, and $(-1)!!=1$.

The next result follows immediately from Proposition 1.

Proposition 2. (See [1].) Let T be a tree with n vertices, where $n>1$ is odd. Then $M(L(T)) \geq 1$, where the equality holds if and only if $p(T-v)=0$ or 2 for every $v \in V(T)$.

Let G be a connected graph, $u \in V(G)$. We define that $f_{G}(u)=d_{G}(u)-w(G-u)$ and $g_{G}(u)=p(G-u)$. Then $f_{G}(u) \geq 0$, where the equality holds if and only if every edge of E_{u} is a bridge of G.

Proposition 3. (See [1].) Let G be a connected graph with m edges. Then $f_{G}(u)+g_{G}(u) \equiv m(\bmod 2)$ for each $u \in V(G)$.

Let e be any edge of G with ends u and v. Let $G(u, w)$ be the graph obtained from $G-e$ by adding a new vertex w and adding a new edge joining w to $u . G(v, w)$ is defined similarly.

Proposition 4. (See [1].) Let G be a graph and e be an edge of G with ends u and v. Then
$M(L(G))=M(L(G(u, w)))+M(L(G(v, w)))$.
Let G be a connected graph with n vertices and m edges, T^{*} be a spanning tree of $G, E(G)-E\left(T^{*}\right)=$ $\left\{e_{1}, e_{2}, \cdots, e_{m-n+1}\right\}$ and $e_{i}=u_{i} v_{i}, \quad 1 \leq i \leq m-n+1$. For any sequence $j_{1}, j_{2}, \cdots, j_{m-n+1}$, where $j_{i} \in\{0,1\}$, let $G\left(j_{1}, j_{2}, \cdots, j_{m-n+1}\right)$ be the graph obtained from T^{*} by adding $m-n+1$ new vertices $w_{1}, w_{2}, \cdots, w_{m-n+1}$ and for every i with $1 \leq i \leq m-n+1$, adding a new edge joining w_{i} to v_{i} if $j_{i}=0$ or joining w_{i} to u_{i} if $j_{i}=1$. For example, $G(0,0, \cdots, 0)$ is denoted by $T^{*}+v_{1} w_{1}+$
$v_{2} w_{2}+\cdots+v_{m-n+1} w_{m-n+1}$. Then $G\left(j_{1}, j_{2}, \cdots, j_{m-n+1}\right)$ is a tree with $m+1$ vertices and m edges. Let $H_{T^{*}}(G)=$ $\left\{G\left(j_{1}, j_{2}, \cdots, j_{m-n+1}\right) \mid j_{i} \in\{0,1\}, 1 \leq i \leq m-n+1\right\}$. Thus $\left|H_{T^{*}}(G)\right|=2^{m-n+1}$. If $m-n+1=0$ (i.e., $E(G)-E\left(T^{*}\right)=\phi$), then $G=T^{*}$ and $H_{T^{*}}(G)=\{G\}$.

Proposition 5. (See [1].) Let G be a connected graph and T* be a spanning tree of G. Then
$M(L(G))=\sum_{T \in H_{T^{*}}(G)} M(L(T))$.
Proposition 6. (See [1].) Let G be a connected graph with n vertices and m edges, where m is even. Then $M(L(G)) \geq 2^{m-n+1}$, and the equality holds if $\Delta(G) \leq 3$, where $\Delta(G)$ is the maximum degree of G.

Proposition 7. (See [1].) Let G be a connected graph with n vertices and m edges, where m is even. Then $M(L(G))=2^{m-n+1}$ if and only if $f_{G}(u)+g_{G}(u) \in\{0,2\}$ for each $u \in V(G)$.

For any non-negative integer r and k, define
$\eta(r)=\sum_{0 \leq k \leq r / 2}\binom{r}{2 k}(2 k)!!$.
Proposition 8. (See [1].) Let G be a connected graph with n vertices and m edges, where m is even. Let x be any vertex in G such that $G-x$ is connected. Then
$M(L(G)) \geq \eta(d(x)) \cdot 2^{m-n-d(x)+2}$.

3. The lower bound for the number of perfect matchings of line graphs

In this section, we will give a lower bound for $M(L(G))$ for any connected graph G with an even number of edges.

To prove the following, we define some notations. For two sets X and Y, let $X-Y=\{u \mid u \in X$ and $u \notin Y\}$. For $X \subseteq V(G)$ and $Y \subseteq V(G)-X$, let $E(X, Y)=\{x y \in E(G) \mid$ $x \in X, y \in Y\}$. If $X=\{x\}$, denote $E(X, Y)$ by $E(x, Y)$. Let $e(x, Y)=|E(x, Y)|$.

Lemma 1. Let G be a connected graph with n vertices and m edges, T^{*} be a spanning tree of G, and $u \in V(G)$ such that $G-u$ is connected. Then there exists a tree $T \in H_{T^{*}}(G)$ such that $p(T-u)=f_{G}(u)+g_{G}(u)$.

Proof. Let $E(G)-E\left(T^{*}\right)=\left\{e_{1}, e_{2}, \cdots, e_{m-n+1}\right\}$ and $e_{i}=$ $u_{i} v_{i}, 1 \leq i \leq m-n+1$. Since $G-u$ is connected, $w(G-$ $u)=1$. We prove the result by induction on $f_{G}(u)$. If $f_{G}(u)=0$, then $e(u, V(G-u))=1$, implying that $E_{u} \subseteq$ $E\left(T^{*}\right)$. Hence $p(T-u)=g_{T}(u)=g_{G}(u)=f_{G}(u)+g_{G}(u)$ for each $T \in H_{T^{*}}(G)$. Assume that $f_{G}(u)=t(t \geq 1)$ and the result holds when $0 \leq f_{G}(u)<t$.

Case 1. There exists an edge $e \in E_{u}-E\left(T^{*}\right)$.
Then $e \in\left\{e_{1}, e_{2}, \cdots, e_{m-n+1}\right\}$. Without loss of generality, we assume that $e=e_{1}$ and $u=u_{1}$. Since $e_{1} \notin E\left(T^{*}\right)$, T^{*} is a spanning tree of $G-e_{1}$ and $G-e_{1}-E\left(T^{*}\right)=$

https://daneshyari.com/en/article/10331900

Download Persian Version:
https://daneshyari.com/article/10331900

Daneshyari.com

[^0]: E-mail address: zhouxuemath@126.com.

