
Information Processing Letters 115 (2015) 280–284

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

An enumeration algorithm for all integers nonrepresentable

by some positive integers

Shunichi Matsubara

Department of Integrated Information Technology, Aoyama Gakuin University, 5-10-1, Fuchinobe, Chuo-ku, Sagamihara, Kanagawa,
252-5258, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 June 2014
Received in revised form 25 September
2014
Accepted 26 September 2014
Available online 11 October 2014
Communicated by R. Uehara

Keywords:
Analysis of algorithms
Frobenius number
Enumeration algorithm
Amortized polynomial-time delay
Amortized analysis

In this paper, we propose an algorithm for enumerating all integers nonrepresentable
by a given set of positive integers. We say that a positive integer n is nonrepresentable
by positive integers a0, a1, · · · , ad−1 if there exist no nonnegative integers x0, x1, · · · , xd−1

such that
∑d−1

i=0 xiai = n. In this paper, we prove that the new algorithm runs in O (t2s)
time, where t and s denote the input and output sizes, respectively; i.e. we prove that
the algorithm can enumerate all the integers nonrepresentable by a given set of positive
integers in amortized polynomial-time delay.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Research on nonrepresentable integers has been moti-
vated by both theoretical and practical considerations. In
addition, the dimension d is regarded from two different
perspectives. In this work, we present a theoretical study
of enumeration for a fixed d; i.e. we estimate the compu-
tational complexity of the enumeration regarding d as a
constant.

Let a0, a1, · · · , ad−1 be relatively prime positive integers
that satisfy the inequality a0 < a1 < · · · < ad−1. We say
that a positive integer n is representable by a0, a1, · · · , ad−1
if n can be written as a linear combination of nonnega-
tive integers; i.e. there exists a set of nonnegative inte-
gers x0, x1, · · · , xd−1 such that

∑d−1
i=0 xiai = n. Conversely,

we say that n is nonrepresentable by a0, a1, · · · , ad−1 if n
is not representable by a0, a1, · · · , ad−1. The set of all non-
representable integers is denoted by NR(a0, a1, · · · , ad−1).

E-mail address: matsubara@it.aoyama.ac.jp.

We call the greatest nonrepresentable integer the Frobe-
nius number, denoted NRmax(a0, a1, · · · , ad−1). For exam-
ple, NR(4, 7, 9) = {1, 2, 3, 5, 6, 10} and NRmax(4, 7, 9) = 10.
When enumerating all integers nonrepresentable by a0,

a1, · · · , ad−1, we call d and the set of a0, a1, · · · , ad−1 the
dimension and the input of the enumeration, respectively.

The number |NR(a0, a1, · · · , ad−1)| has been actively
researched [1], where the vertical bars on both sides
denote the cardinality of the set. Sylvester proved that
|NR(a, b)| = (1/2)(a − 1)(b − 1) for two positive integers a
and b [2], which is among the best known results in non-
representable integer research. In a computational study,
Krawczyk and Paz found the upper and lower bounds for
|NR(a0, a1, · · · , ad−1)| and they proved that these bounds
can be computed in polynomial time [3]. Although many
such bounds have been identified [1], Krawczyk and Paz’s
bounds are adopted in our newly proposed algorithm. Be-
sides the result by Krawczyk and Paz, a lot of bounds have
been found [1]. However, no formula such as |NR(a, b)| =
(1/2)(a − 1)(b − 1) is known for dimensions higher than 2.

http://dx.doi.org/10.1016/j.ipl.2014.09.028
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.09.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:matsubara@it.aoyama.ac.jp
http://dx.doi.org/10.1016/j.ipl.2014.09.028
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.09.028&domain=pdf

S. Matsubara / Information Processing Letters 115 (2015) 280–284 281

In this paper, we propose an algorithm for enumerat-
ing all integers nonrepresentable by a given set of pos-
itive integers. The algorithm runs in O (t2s) time, where
t and s are the input and output sizes, respectively; i.e.
the algorithm enumerates all nonrepresentable integers in
amortized polynomial-time delay. The proposed algorithm
adopts a simple approach; it sequentially checks all non-
negative integers from 0 to Krawczyk and Paz’s upper
bound of nonrepresentable integers. For each nonnegative
integer in the span, the algorithm spends O (t2) time.

Although the enumeration of all integers nonrepre-
sentable by a given set of positive integers has been little
investigated, computational methods for finding the Frobe-
nius number have been extensively published. The prob-
lem of finding the Frobenius number is known as the
Frobenius coin-exchange problem. Ramírez Alfonsín proved
that the Frobenius coin-exchange problem is NP-hard if the
dimension d is a input parameter [4]. However, Kannan
found that, if d is a constant, the problem can be computed
in polynomial time [5]. Kannan’s algorithm relies on the
concepts and results from the geometry of numbers. An
alternative polynomial-time algorithm for fixed d was de-
veloped by Barvinok and Woods [6]. Thus, if we consider d
as a constant, then we may be able to develop an efficient
algorithm for enumerating nonrepresentable integers by
extending an algorithm that computes the Frobenius num-
ber. However, in Section 4, we point out that extending
Frobenius number computations to enumerating nonrepre-
sentable integers may not lead to efficient algorithms.

This paper is organized as follows. Section 2 presents
essential concepts and notations of nonrepresentable inte-
gers. In addition, we also explain the concepts of bit com-
plexity and polynomial-time delay. In Section 3, developing
a new algorithm for enumerating all integers nonrepre-
sentable by a given set of positive integers and proving its
validity are presented. Moreover, we prove that the algo-
rithm runs in amortized polynomial-time delay. A potential
alternative approach, extending the algorithms for comput-
ing the Frobenius number to algorithms for enumerating
nonrepresentable integers, is described in Section 4. The
paper concludes with ideas for future work in Section 5.

2. Preliminary

When discussing integers nonrepresentable by positive
integers a0, a1, · · · , ad−1, we assume that a0, a1, · · · , ad−1
are relatively prime and satisfy a0 < a1 < · · · < ad−1.
In addition, we assume that d ≥ 2. These assumptions
are consistent with those of existing researches on the
Frobenius number [1,7,5,3]. Where no ambiguity arises,
NRmax(a0, a1, · · · , ad−1) and NR(a0, a1, · · · , ad−1) are often
simply denoted by NRmax and NR, respectively.

The base of the logarithm is set to 2. Suppose that
an algorithm outputs integers o0, o1, · · · , on−1 from given
integers i0, i1, · · · , im−1. The input size is then defined as
∑m−1

α=0 (�log(iα)� + 1). In other words, the input size is the
number of bits required to write the integers. Similarly, the
output size is defined as

∑n−1
α=0(�log(oα)� + 1).

We adopt a bit operation as a primitive operation. A bit
operation is a unit of time rather than an elementary arith-
metic operation. If a problem P can be solved in n bit

operations, then n denotes the bit complexity of P . When
finding nonrepresentable integers, computational costs are
conventionally estimated by the bit complexity. Bit com-
plexity is a theoretical measure; in practical research, the
time unit is an elementary arithmetic operation.

In this paper, we focus on enumeration algorithms
rather than single-object computation algorithms. In this
case, the parameters of the computational complexity gen-
erally include both the input and output sizes, since the
number of the outputs to enumerate can exponentially in-
crease. For this purpose, we use the term polynomial-time
delay. We say that an enumeration algorithm runs in amor-
tized polynomial-time delay if the algorithm runtime is of
the order of a function that is polynomial in the input size
and linear in the output size and in worst-case polynomial-
time delay if the following three parts can be computed in
polynomial time in the input size. (1) Obtaining the first
output object after starting the algorithm; (2) obtaining
the next output object after outputting any output; (3) ter-
minating the algorithm after obtaining the last output ob-
ject. An enumeration algorithm runs in polynomial-space if
the spatial requirements of the algorithm are of the order
of a polynomial function in the input size. The algorithm
notations adopted in this paper follow from pseudocode
conventions in [8].

3. A new enumeration algorithm for nonrepresentable
integers

3.1. Definitions

We propose a new algorithm called Enumerate, which
enumerates all integers nonrepresentable by a set of pos-
itive integers. This algorithm uses an upper bound B of
nonrepresentable integers for a given set of positive inte-
gers, which was reported by Krawczyk and Paz [3]. Enu-

merate checks the nonrepresentabilities of all integers
from 0 to B and prints each nonrepresentable case. The
representability of an integer is decided from a binary ar-
ray T . For each i with 0 ≤ i ≤ B , T [i] determines whether
i is nonrepresentable (T [i] = 0) or representable (T [i] = 1).

First, Enumerate computes the upper bound B and ini-
tializes each element of T to 0 except for T [0], which is
set to 1 because 0 is representable for any input. Next,
Enumerate executes the main processes, sequentially step-
ping through each integer i from 0 to B in ascending order.
The main processes determine the representability of each
integer i + a j , where 0 ≤ j ≤ d − 1. When Enumerate pro-
cesses for T [i], the algorithm rewrites T [i + a j] for each
i + a j , where 0 ≤ j ≤ d − 1. If T [i] = 0, then the algorithm
does nothing. If T [i] = 1, then it overwrites T [i + a j] with
1 for each j (0 ≤ j ≤ d − 1). Note that the value of T [i] has
already been decided at the start of processing T [i].

3.2. Formal proofs

Formal proofs are developed in this subsection. The
following notation is adopted. The positive integers for
which we prove statements are denoted a0, a1, · · · , ad−1.
The symbols NRmax and NR denote NRmax(a0, a1, · · · , ad−1)

Download English Version:

https://daneshyari.com/en/article/10331902

Download Persian Version:

https://daneshyari.com/article/10331902

Daneshyari.com

https://daneshyari.com/en/article/10331902
https://daneshyari.com/article/10331902
https://daneshyari.com

