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In this paper, we propose an algorithm for enumerating all integers nonrepresentable 
by a given set of positive integers. We say that a positive integer n is nonrepresentable
by positive integers a0, a1, · · · , ad−1 if there exist no nonnegative integers x0, x1, · · · , xd−1

such that 
∑d−1

i=0 xiai = n. In this paper, we prove that the new algorithm runs in O (t2s)
time, where t and s denote the input and output sizes, respectively; i.e. we prove that 
the algorithm can enumerate all the integers nonrepresentable by a given set of positive 
integers in amortized polynomial-time delay.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Research on nonrepresentable integers has been moti-
vated by both theoretical and practical considerations. In 
addition, the dimension d is regarded from two different 
perspectives. In this work, we present a theoretical study 
of enumeration for a fixed d; i.e. we estimate the compu-
tational complexity of the enumeration regarding d as a 
constant.

Let a0, a1, · · · , ad−1 be relatively prime positive integers 
that satisfy the inequality a0 < a1 < · · · < ad−1. We say 
that a positive integer n is representable by a0, a1, · · · , ad−1
if n can be written as a linear combination of nonnega-
tive integers; i.e. there exists a set of nonnegative inte-
gers x0, x1, · · · , xd−1 such that 

∑d−1
i=0 xiai = n. Conversely, 

we say that n is nonrepresentable by a0, a1, · · · , ad−1 if n
is not representable by a0, a1, · · · , ad−1. The set of all non-
representable integers is denoted by NR(a0, a1, · · · , ad−1). 
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We call the greatest nonrepresentable integer the Frobe-
nius number, denoted NRmax(a0, a1, · · · , ad−1). For exam-
ple, NR(4, 7, 9) = {1, 2, 3, 5, 6, 10} and NRmax(4, 7, 9) = 10. 
When enumerating all integers nonrepresentable by a0,

a1, · · · , ad−1, we call d and the set of a0, a1, · · · , ad−1 the 
dimension and the input of the enumeration, respectively.

The number |NR(a0, a1, · · · , ad−1)| has been actively 
researched [1], where the vertical bars on both sides 
denote the cardinality of the set. Sylvester proved that 
|NR(a, b)| = (1/2)(a − 1)(b − 1) for two positive integers a
and b [2], which is among the best known results in non-
representable integer research. In a computational study, 
Krawczyk and Paz found the upper and lower bounds for 
|NR(a0, a1, · · · , ad−1)| and they proved that these bounds 
can be computed in polynomial time [3]. Although many 
such bounds have been identified [1], Krawczyk and Paz’s 
bounds are adopted in our newly proposed algorithm. Be-
sides the result by Krawczyk and Paz, a lot of bounds have 
been found [1]. However, no formula such as |NR(a, b)| =
(1/2)(a − 1)(b − 1) is known for dimensions higher than 2.
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In this paper, we propose an algorithm for enumerat-
ing all integers nonrepresentable by a given set of pos-
itive integers. The algorithm runs in O (t2s) time, where 
t and s are the input and output sizes, respectively; i.e. 
the algorithm enumerates all nonrepresentable integers in 
amortized polynomial-time delay. The proposed algorithm 
adopts a simple approach; it sequentially checks all non-
negative integers from 0 to Krawczyk and Paz’s upper 
bound of nonrepresentable integers. For each nonnegative 
integer in the span, the algorithm spends O (t2) time.

Although the enumeration of all integers nonrepre-
sentable by a given set of positive integers has been little 
investigated, computational methods for finding the Frobe-
nius number have been extensively published. The prob-
lem of finding the Frobenius number is known as the 
Frobenius coin-exchange problem. Ramírez Alfonsín proved 
that the Frobenius coin-exchange problem is NP-hard if the 
dimension d is a input parameter [4]. However, Kannan 
found that, if d is a constant, the problem can be computed 
in polynomial time [5]. Kannan’s algorithm relies on the 
concepts and results from the geometry of numbers. An 
alternative polynomial-time algorithm for fixed d was de-
veloped by Barvinok and Woods [6]. Thus, if we consider d
as a constant, then we may be able to develop an efficient 
algorithm for enumerating nonrepresentable integers by 
extending an algorithm that computes the Frobenius num-
ber. However, in Section 4, we point out that extending 
Frobenius number computations to enumerating nonrepre-
sentable integers may not lead to efficient algorithms.

This paper is organized as follows. Section 2 presents 
essential concepts and notations of nonrepresentable inte-
gers. In addition, we also explain the concepts of bit com-
plexity and polynomial-time delay. In Section 3, developing 
a new algorithm for enumerating all integers nonrepre-
sentable by a given set of positive integers and proving its 
validity are presented. Moreover, we prove that the algo-
rithm runs in amortized polynomial-time delay. A potential 
alternative approach, extending the algorithms for comput-
ing the Frobenius number to algorithms for enumerating 
nonrepresentable integers, is described in Section 4. The 
paper concludes with ideas for future work in Section 5.

2. Preliminary

When discussing integers nonrepresentable by positive 
integers a0, a1, · · · , ad−1, we assume that a0, a1, · · · , ad−1
are relatively prime and satisfy a0 < a1 < · · · < ad−1. 
In addition, we assume that d ≥ 2. These assumptions 
are consistent with those of existing researches on the 
Frobenius number [1,7,5,3]. Where no ambiguity arises, 
NRmax(a0, a1, · · · , ad−1) and NR(a0, a1, · · · , ad−1) are often 
simply denoted by NRmax and NR, respectively.

The base of the logarithm is set to 2. Suppose that 
an algorithm outputs integers o0, o1, · · · , on−1 from given 
integers i0, i1, · · · , im−1. The input size is then defined as 
∑m−1

α=0 (�log(iα)� + 1). In other words, the input size is the 
number of bits required to write the integers. Similarly, the 
output size is defined as 

∑n−1
α=0(�log(oα)� + 1).

We adopt a bit operation as a primitive operation. A bit 
operation is a unit of time rather than an elementary arith-
metic operation. If a problem P can be solved in n bit 

operations, then n denotes the bit complexity of P . When 
finding nonrepresentable integers, computational costs are 
conventionally estimated by the bit complexity. Bit com-
plexity is a theoretical measure; in practical research, the 
time unit is an elementary arithmetic operation.

In this paper, we focus on enumeration algorithms 
rather than single-object computation algorithms. In this 
case, the parameters of the computational complexity gen-
erally include both the input and output sizes, since the 
number of the outputs to enumerate can exponentially in-
crease. For this purpose, we use the term polynomial-time 
delay. We say that an enumeration algorithm runs in amor-
tized polynomial-time delay if the algorithm runtime is of 
the order of a function that is polynomial in the input size 
and linear in the output size and in worst-case polynomial-
time delay if the following three parts can be computed in 
polynomial time in the input size. (1) Obtaining the first 
output object after starting the algorithm; (2) obtaining 
the next output object after outputting any output; (3) ter-
minating the algorithm after obtaining the last output ob-
ject. An enumeration algorithm runs in polynomial-space if 
the spatial requirements of the algorithm are of the order 
of a polynomial function in the input size. The algorithm 
notations adopted in this paper follow from pseudocode 
conventions in [8].

3. A new enumeration algorithm for nonrepresentable 
integers

3.1. Definitions

We propose a new algorithm called Enumerate, which 
enumerates all integers nonrepresentable by a set of pos-
itive integers. This algorithm uses an upper bound B of 
nonrepresentable integers for a given set of positive inte-
gers, which was reported by Krawczyk and Paz [3]. Enu-

merate checks the nonrepresentabilities of all integers 
from 0 to B and prints each nonrepresentable case. The 
representability of an integer is decided from a binary ar-
ray T . For each i with 0 ≤ i ≤ B , T [i] determines whether 
i is nonrepresentable (T [i] = 0) or representable (T [i] = 1).

First, Enumerate computes the upper bound B and ini-
tializes each element of T to 0 except for T [0], which is 
set to 1 because 0 is representable for any input. Next,
Enumerate executes the main processes, sequentially step-
ping through each integer i from 0 to B in ascending order. 
The main processes determine the representability of each 
integer i + a j , where 0 ≤ j ≤ d − 1. When Enumerate pro-
cesses for T [i], the algorithm rewrites T [i + a j] for each 
i + a j , where 0 ≤ j ≤ d − 1. If T [i] = 0, then the algorithm 
does nothing. If T [i] = 1, then it overwrites T [i + a j] with 
1 for each j (0 ≤ j ≤ d − 1). Note that the value of T [i] has 
already been decided at the start of processing T [i].

3.2. Formal proofs

Formal proofs are developed in this subsection. The 
following notation is adopted. The positive integers for 
which we prove statements are denoted a0, a1, · · · , ad−1. 
The symbols NRmax and NR denote NRmax(a0, a1, · · · , ad−1)
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