
Information Processing Letters 115 (2015) 292–297

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Trace-based schedulability analysis to enhance passive

side-channel attack resilience of embedded software

Giovanni Agosta, Alessandro Barenghi ∗, Gerardo Pelosi, Michele Scandale

Department of Electronics, Information and Bioengineering – DEIB, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 April 2014
Received in revised form 14 August 2014
Accepted 29 September 2014
Available online 16 October 2014
Communicated by L. Viganò

Keywords:
Compilers
Cryptography
Trace theory
Embedded systems security
Side-channel attacks

Side channel attacks (SCAs) are a practical threat to the security of cryptographic
implementations. A well known countermeasure against them is to alter the temporal
location of instructions among different executions of the code. In this work we provide
an algorithm to generate valid schedules of block cipher implementations. The proposed
algorithm relies on a trace-theory based analysis and efficiently generates any valid
schedule of the implementation under exam, selecting the ones with higher diversity
among them. The algorithm was implemented as a pass in the backend of the LLVM
compiler suite, and the results of the automated instruction scheduling are provided to
validate its effectiveness as an SCA countermeasure employing the whole ISO standard
block cipher suite.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The role of cryptography has grown to a fundamental
one in ensuring the security of modern embedded systems.
One of the crucial aspects of cryptographic primitives, be-
sides their mathematical security, is to be able to resist the
so-called Side-Channel Attacks (SCAs). SCAs exploit the fact
that several characteristics of an embedded device, such
as execution time or instantaneous power consumption,
depend on the processed data values [1]. The classic work-
flow for SCAs aims at recovering the value of the secret
key, e.g., of a block cipher, one portion at a time. This is
possible since the cryptographic algorithm combines the
intermediate data values with a limited number of secret
key bits at a time. For instance, employing the power con-
sumption as a side-channel, the first step to perform an
SCA is to measure it for the targeted device during a large

* Corresponding author. Tel.: +39 02 23993476.
E-mail addresses: agosta@acm.org (G. Agosta),

alessandro.barenghi@polimi.it (A. Barenghi), gerardo.pelosi@polimi.it
(G. Pelosi), michele.scandale@polimi.it (M. Scandale).

amount of computations with different input messages.
Subsequently, an intermediate operation of the algorithm
employing a small portion of the secret-key is selected,
and its results are computed for all the possible values of
the key portion and input messages. From these hypothe-
ses on the result values of the targeted operation, a series
of predictions of the power consumption are made (one
for each value of the secret-key portion). Finally, the pre-
dicted consumption values are compared with the actual
measurements through statistical means to find out which
prediction fits best. Such a prediction is the one relying on
the correct hypothesis of the value of the secret-key por-
tion.

In this paper, we tackle the security of software imple-
mentations of cryptographic primitives, devoting our atten-
tion to their protection. We exploit the data dependencies
of a cipher implementation to derive different, semanti-
cally equivalent, schedules for it. This allows to employ
different valid schedules for the cipher at runtime, ef-
fectively increasing the difficulty of modeling the execu-
tion flow of the cipher. Since the time-alignment of the
measurements is a fundamental requirement for a correct
SCA [1–3], changing the execution order of the instructions

http://dx.doi.org/10.1016/j.ipl.2014.09.030
0020-0190/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ipl.2014.09.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:agosta@acm.org
mailto:alessandro.barenghi@polimi.it
mailto:gerardo.pelosi@polimi.it
mailto:michele.scandale@polimi.it
http://dx.doi.org/10.1016/j.ipl.2014.09.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.09.030&domain=pdf

G. Agosta et al. / Information Processing Letters 115 (2015) 292–297 293

of a cipher effectively weakens the effectiveness of the
statistical test to infer the key. We propose the first se-
curity evaluation of block cipher algorithms in terms of
their schedulability properties, analyzing their data de-
pendency graph structures by means of a new and auto-
matic rescheduling technique aimed at maximizing sched-
ule diversity. This provides an effective improvement with
respect to the state-of-the-art, which only contemplates
some examples of manual, ad-hoc rescheduling of the
AES cipher [3], and the insertion of random length delays
through dummy instructions [2]. Our automated analysis
provides the ground to deploy multiple copies of the block
cipher executable code, each one with a different schedule,
and randomly pick one of them at each required execution
of the cryptographic primitive. We provide a practical val-
idation of our approach analyzing its effects on the whole
set of ISO standard block ciphers.

2. Instruction schedulability analysis

In this section we provide the fundamentals of trace
theory, the mathematical framework we employ to obtain
a schedulability analysis with an acceptable computational
effort.

2.1. A formal approach to instruction scheduling

We represent the algorithm through its Control Flow
Graph (CFG): a directed graph with the instructions of the
algorithm as vertices (nodes) and the control flow depen-
dencies among them as edges. By convention, the CFG has
a single node s without any incoming edges, known as
the entry node, and a single node e without any outgoing
edges, known as the exit node. Note that a CFG implies a
specific schedule of the instructions, i.e., the one imposed
by the sequential nature of the original code. Trace the-
ory [4,5] provides an approach to manipulate the schedules
of a program, mapping the CFG into a Finite State Automa-
ton (FSA), labeling each CFG node with a letter, and each
outgoing edge with the letter of the destination node.

Definition 2.1 (Program language). Let Σ be the set of sym-
bols employed for the vertices of the CFG, and Σ∗ be the
set of all finite sequences of symbols in Σ . Considering
the labeled CFG as a FSA, with initial state s, final state e,
and transition symbols equal to the letter of the destina-
tion state, the program language is defined as the subset of
Σ∗ recognized by the FSA.

The Program Language contains the strings representing
all the instruction sequences that result from an execu-
tion of the program, i.e., all the legal program execution logs.
From now on, we will concentrate on a single program ex-
ecution log and focus on the notion of data dependence
within the log instructions to analyze their rescheduling.
To model the independence or dependence among instruc-
tions, trace theory employs two relations: I and D, de-
fined as follows.

Definition 2.2 (Dependence and independence relations). Let
Σ be the program language alphabet. The irreflexive and

symmetric relation I = {(a, b) ∈ Σ × Σ | a, b have no data
dependence} is defined to be an independence relation. The
reflexive, symmetric, and transitive relation D = Σ ×Σ \I
is defined to be a dependence relation.

Definition 2.3 (Word equivalence relation). Let Σ∗ be the
set of words over the alphabet Σ . The independence rela-
tion I induces an equivalence relation ∼I over Σ∗ . Given
two words, x, y ∈ Σ∗ , x ∼I y iff there exists a sequence
of words z0, z1, . . . , zk in Σ∗ such that x = z0, y = zk and
∀i, 0 ≤ i ≤ k it holds that zi = αi .ai .bi .βi , zi+1 = αi .bi .ai .βi ,
(ai, bi) ∈ I , αi, βi ∈ Σ∗ where the notation _._ denotes the
concatenation between either letters or words.

Two words in Σ∗ are equivalent under ∼I if and only
if the latter can be obtained from the former through a
succession of swaps of consecutive letters.

Definition 2.4 (Trace). A trace is defined as an equivalence
class of the set Σ∗/∼I .

A subset of the set of all possible traces in Σ∗/∼I is
called a Trace Language, which is constituted by the rep-
resentative words of each trace, computed as the outcome
of a normalization algorithm. It is thus possible, given a
Program language and a Dependence Relation (resp. Indepen-
dence Relation), to build a Trace Language, where each trace
contains (at least) one word, i.e., one possible program ex-
ecution log.

Definition 2.5 (Dependence graph). Let Σ be the program
language alphabet and I an independence relation over Σ .
Given a word w = a0.a1 . . .an−1.an ∈ Σ∗ , the dependence
graph 〈w〉Σ,I of w is defined to be a labeled, directed
graph 〈w〉Σ,I = (V , E) with each letter ai ∈ w bound
to a node vi ∈ V (thus the number of graph nodes |V |
matches the word length |w|) and ∀0 ≤ i, j ≤ n, vi, v j ∈ V ,
(vi, v j) ∈ E ⇔ (ai, a j) /∈ I .

Two words w , w ′ over the alphabet Σ belong to the
same trace T ∈ Σ∗/∼I iff their dependence graphs are
isomorphic: 〈w〉Σ,I ∼= 〈w ′〉Σ,I ⇔ w ∼I w ′ . The legitimate
re-schedules of w can be obtained as the logs correspond-
ing to the graphs which are isomorphic to 〈w〉Σ,I . In order
to find all the legal schedules of a program execution log
belonging to a trace T , the most widespread choice is to
select the representative of the trace as the one in Foata
Normal Form.

Definition 2.6 (Foata Normal Form). Let Σ be the program
language alphabet and I an independence relation over Σ .
A word w ∈ Σ∗ is in Foata normal form if either it is the
empty word or if it can be decomposed in factors w =
w0.w1.wn where: (i) each factor wi is a concatenation
of pairwise independent letters, minimal with respect to
lexicographical order (ii) given a letter a ∈ wi there exists
at least one letter b in the consecutive word wi+1 (i.e.,
b ∈ wi+1) such that a and b are dependent, i.e., (a, b) /∈ I .

The key point of the Foata normal form is that its fac-
tors represent sets of original code instructions that can be

Download English Version:

https://daneshyari.com/en/article/10331904

Download Persian Version:

https://daneshyari.com/article/10331904

Daneshyari.com

https://daneshyari.com/en/article/10331904
https://daneshyari.com/article/10331904
https://daneshyari.com

