Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

The clique-transversal set problem in claw-free graphs with degree at most 4

Zuosong Liang^a, Erfang Shan^{b,c,*}

^a School of Management, Qufu Normal University, Rizhao 276826, China

^b School of Management, Shanghai University, Shanghai 200444, China

^c Department of Mathematics, Shanghai University, Shanghai 200444, China

ARTICLE INFO

Article history: Received 13 April 2013 Received in revised form 5 October 2014 Accepted 8 October 2014 Available online 18 October 2014 Communicated by B. Doerr

Keywords: Graph algorithms Clique Clique-transversal set problem Polynomial time algorithm Claw-free graph

1. Introduction

All graphs considered here are finite, simple and nonempty. For standard terminology not given here we refer the reader to [5]. Let G = (V, E) be a graph with vertex set V and edge set E. The number of vertices of G is called the order of G. For a vertex $v \in V$, the open neigh*borhood* N(v) of v is defined as the set of vertices adjacent to v, i.e., $N(v) = \{u : uv \in E\}$. The closed neighborhood of *v* is $N[v] = N(v) \cup \{v\}$. Every vertex in N(v) is also called a neighbor of v. The degree of v is equal to |N(v)|, denoted by $d_G(v)$ or simply d(v). By $\delta(G)$ and $\Delta(G)$, we denote the minimum degree and the maximum degree of graph G, respectively. A graph G is said to be k-regular if $d_G(v) = k$ for all $v \in V$. In particular, a 3-regular graph is also called a *cubic* graph. As usual, $K_{m,n}$ denotes a com-

Corresponding author at: School of Management, Shanghai University, Shanghai 200444, China.

E-mail addresses: shuxueyunchou@163.com (Z. Liang), efshan@shu.edu.cn (E. Shan).

http://dx.doi.org/10.1016/j.ipl.2014.10.008 0020-0190/© 2014 Elsevier B.V. All rights reserved.

ABSTRACT

A clique of a graph G is defined as a complete subgraph maximal under inclusion and having at least two vertices. A clique-transversal set D of G is a subset of vertices of Gsuch that D meets all cliques of G. The clique-transversal set problem is to find a minimum clique-transversal set of G. In this paper we present a polynomial time algorithm for the clique-transversal set problem on claw-free graphs with degree at most 4.

© 2014 Elsevier B.V. All rights reserved.

plete bipartite graph with classes of cardinality *m* and *n*; K_n is the complete graph on *n* vertices. The graph $K_{1,3}$ is also called a *claw*, and K_3 a *triangle*. The graph $K_4 - e$ (obtained from K_4 by deleting one edge) is called a *diamond*. For a subset $S \subseteq V$, the subgraph induced by S is denoted by G[S]. For a given graph F, we say that a graph G is F-free if it does not contain F as an induced subgraph. In particular, a $K_{1,3}$ -free graph is *claw-free*. For a family of graphs $\{F_1, \ldots, F_k\}$, we say that G is $\{F_1, \ldots, F_k\}$ -free if it is F_i -free for all i = 1, ..., k. A matching in a graph G is a set of pairwise nonadjacent edges. The matching number, denoted by $\alpha'(G)$, is the cardinality of a maximum matching of G. An edge covering of G is a set of edges that meets every vertex of G. The number of edges in a minimum edge covering of G without isolated vertices is denoted by $\beta'(G)$. For any graph of order *n* without isolated vertices, it is easy to verify that $\alpha'(G) + \beta'(G) = n$.

A clique C of a graph G is a complete subgraph maximal under inclusion and having at least two vertices. According to this definition, isolated vertices are not considered to be cliques here. A clique of order *m* of *G* is called an *m*-clique of G. A set $D \subseteq V$ is called a *clique-transversal set* of G, if

D meets all cliques of *G*, i.e., $D \cap V(C) \neq \emptyset$ for any clique *C* of *G*. The *clique-transversal number*, denoted by $\tau_C(G)$, is the minimum cardinality of a clique-transversal set of *G*. The *clique-transversal set problem* (abbreviated to CTS) is to find a minimum clique-transversal set of *G*.

To motivate the study of the clique-transversal sets in graphs, we present an application in terms of communication networks. Consider a graph associated with a communication network where the vertices in the graph correspond to the sites of the network. A clique usually represents a cluster of sites that have the best possible ability to rapidly exchange information among the members of the cluster. The clique-transversal set in the graph is faster to control all clusters and keeps the ability of dominating the whole network.

Erdős, Gallai and Tuza [12] observed the clique-transversal set problem for an arbitrary graph is NP-hard. Chang, Farber and Tuza [7] proved the clique-transversal set problem is NP-hard on split graphs. Guruswami and Rangan [13] proved that the clique-transversal set problem is still NP-hard on cocomparability, planar, line and total graphs. However, there are polynomial time algorithms to find the minimum clique-transversal set for comparability graphs [4], strongly chordal graphs [7,8,13], chordal graphs with bounded clique size [13], k-trees with bounded k [8], balanced graphs [6], short-chorded graphs with no 3-fans nor 4-wheels [11], distance-hereditaty graphs [16], Helly circular-arc graphs [13] and $\overline{3K_2}$ -free circular-arc graphs [10]. The bounds of clique-transversal number of graphs were extensively studied in [1–3,9,12,19] and elsewhere.

We proved that the clique-transversal set problem is NP-complete on cubic graphs [15]. In [13] the authors proved that the clique-transversal set problem is NP-hard on line graphs with maximum degree 12. This implies that the problem is also NP-hard on claw-free graphs with maximum degree 12. In this paper we give a polynomial time algorithm for the clique-transversal set problem in claw-free graphs with degree at most 4.

2. Preliminaries

Let us introduce some more notation and terminology. By starting with a disjoint union of two graphs *G* and *H* and adding edges joining every vertex of *G* to every vertex of *H*, one obtains the *join* of *G* and *H*, denoted by $G \lor H$. The join $C_n \lor K_1$ of a cycle C_n and a single vertex is referred to as a *n*-wheel with *n* spokes and denoted by W_n . Let us call a graph of the form $C_n \lor \overline{K_2}$ $(n \ge 4)$ a *double n*-wheel. The join $P_n \lor K_1$ of a path P_n and a single vertex is referred to as a *n*-fan with *n* spokes and denoted by F_n . A graph is called a *domino* if every vertex is contained in at most two cliques. Dominos are a sub-class of claw-free graphs and were studied by Kloks et al. [14]. Let R(G) be the graph obtained from *G* by identifying all the vertices with the same closed neighborhood.

For dominos, the following lemma due to Kloks et al. [14].

Lemma 1. (See [14].) If G is a domino, then we have the following statements.

- (1) There exists a linear time algorithm to enumerate all the cliques of *G*.
- (2) The graph R(G) can obtain from G in linear time.
- (3) A graph G is a domino if and only if R(G) is a {claw, diamond}-free graph.
- (4) A graph G is a domino if and only if G is a {4-wheel, 4-fan, claw}-free graph.

Lemma 2. If *G* is a {claw, diamond}-free graph, then there exists a polynomial time algorithm for the clique-transversal set problem of *G*.

Proof. Without loss of generality, we may assume that *G* is connected and *G* is not complete. If *G* is a {claw, diamond}-free graph, then we can easily check that *G* is the line graph of a triangle-free graph *H*, otherwise there would be a diamond in *G*. Graph *H* can be obtained in linear time by the algorithm of Roussopoulos (see [18]). So, the clique-transversal set problem of *G* is equivalent to find a minimum edge cover in the graph obtained from *H* by deleting pendant vertices. Since this problem is polynomially computed in $O(\sqrt{|V(H)|}|E(H)|)$ by finding a maximum matching and extending it greedily so that all vertices are covered [17], the clique-transversal set problem of *G* can be solved in polynomial time. \Box

Theorem 3. There is a polynomial time algorithm for the cliquetransversal set problem in a domino graph *G*.

Proof. By Lemma 1, we see that the graph R(G) can be obtained from *G* in linear time, and R(G) is {claw, diamond}-free. It follows from Lemma 2 that the clique-transversal set problem in R(G) can be calculated in polynomial time. But clearly $\tau_C(G) = \tau_C(R(G))$ by the construction of R(G), and hence the clique-transversal set problem of *G* can be calculated in polynomial time. \Box

Note that each vertex in a claw-free graph with $\Delta(G) \leq$ 3 lies in at most two cliques. By Theorem 3, we immediately get the following result.

Corollary 4. If G is a claw-free graph with $\Delta(G) \leq 3$, then there exists a polynomial time algorithm for the clique-transversal set problem.

3. A polynomial time algorithm for CTS problem on claw-free graph with maximum degree 4

In this section, we present a polynomial time algorithm for clique-transversal set problem in a claw-free graph *G* with $\Delta(G) = 4$. For a claw-free graph *G* with $\Delta(G) = 4$, we have the following result by observing that a vertex of *G* is possibly contained in three cliques.

Lemma 5. For a claw-free graph *G* with $\Delta(G) \leq 4$, let M(G) denote the set of vertices of *G* each of which lies in at least three cliques of *G*. If $|M(G)| \geq 1$, then we can construct a claw-free graph G^* with $\Delta(G^*) \leq 4$ and $|M(G^*)| < |M(G)|$, and a minimum clique-transversal set of *G* can be obtained from a minimum clique-transversal set of G^* .

Download English Version:

https://daneshyari.com/en/article/10331913

Download Persian Version:

https://daneshyari.com/article/10331913

Daneshyari.com