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A clique of a graph G is defined as a complete subgraph maximal under inclusion and 
having at least two vertices. A clique-transversal set D of G is a subset of vertices of G
such that D meets all cliques of G . The clique-transversal set problem is to find a minimum 
clique-transversal set of G . In this paper we present a polynomial time algorithm for the 
clique-transversal set problem on claw-free graphs with degree at most 4.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered here are finite, simple and non-
empty. For standard terminology not given here we refer 
the reader to [5]. Let G = (V , E) be a graph with ver-
tex set V and edge set E . The number of vertices of G is 
called the order of G . For a vertex v ∈ V , the open neigh-
borhood N(v) of v is defined as the set of vertices adjacent 
to v , i.e., N(v) = {u : uv ∈ E}. The closed neighborhood of 
v is N[v] = N(v) ∪ {v}. Every vertex in N(v) is also called 
a neighbor of v . The degree of v is equal to |N(v)|, de-
noted by dG(v) or simply d(v). By δ(G) and Δ(G), we 
denote the minimum degree and the maximum degree of 
graph G , respectively. A graph G is said to be k-regular if 
dG(v) = k for all v ∈ V . In particular, a 3-regular graph is 
also called a cubic graph. As usual, Km,n denotes a com-
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plete bipartite graph with classes of cardinality m and n; 
Kn is the complete graph on n vertices. The graph K1,3 is 
also called a claw, and K3 a triangle. The graph K4 − e (ob-
tained from K4 by deleting one edge) is called a diamond. 
For a subset S ⊆ V , the subgraph induced by S is denoted 
by G[S]. For a given graph F , we say that a graph G is 
F -free if it does not contain F as an induced subgraph. In 
particular, a K1,3-free graph is claw-free. For a family of 
graphs {F1, . . . , Fk}, we say that G is {F1, . . . , Fk}-free if it 
is Fi -free for all i = 1, . . . , k. A matching in a graph G is 
a set of pairwise nonadjacent edges. The matching number, 
denoted by α′(G), is the cardinality of a maximum match-
ing of G . An edge covering of G is a set of edges that meets 
every vertex of G . The number of edges in a minimum 
edge covering of G without isolated vertices is denoted 
by β ′(G). For any graph of order n without isolated ver-
tices, it is easy to verify that α′(G) + β ′(G) = n.

A clique C of a graph G is a complete subgraph maximal 
under inclusion and having at least two vertices. According 
to this definition, isolated vertices are not considered to be 
cliques here. A clique of order m of G is called an m-clique
of G . A set D ⊆ V is called a clique-transversal set of G , if 
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D meets all cliques of G , i.e., D ∩ V (C) �= ∅ for any clique 
C of G . The clique-transversal number, denoted by τC (G), is 
the minimum cardinality of a clique-transversal set of G . 
The clique-transversal set problem (abbreviated to CTS) is to 
find a minimum clique-transversal set of G .

To motivate the study of the clique-transversal sets 
in graphs, we present an application in terms of com-
munication networks. Consider a graph associated with a 
communication network where the vertices in the graph 
correspond to the sites of the network. A clique usually 
represents a cluster of sites that have the best possible 
ability to rapidly exchange information among the mem-
bers of the cluster. The clique-transversal set in the graph 
is faster to control all clusters and keeps the ability of 
dominating the whole network.

Erdős, Gallai and Tuza [12] observed the clique-trans-
versal set problem for an arbitrary graph is NP-hard. 
Chang, Farber and Tuza [7] proved the clique-transversal 
set problem is NP-hard on split graphs. Guruswami and 
Rangan [13] proved that the clique-transversal set prob-
lem is still NP-hard on cocomparability, planar, line and 
total graphs. However, there are polynomial time algo-
rithms to find the minimum clique-transversal set for 
comparability graphs [4], strongly chordal graphs [7,8,13], 
chordal graphs with bounded clique size [13], k-trees with 
bounded k [8], balanced graphs [6], short-chorded graphs 
with no 3-fans nor 4-wheels [11], distance-hereditaty 
graphs [16], Helly circular-arc graphs [13] and 3K2-free 
circular-arc graphs [10]. The bounds of clique-transversal 
number of graphs were extensively studied in [1–3,9,12,19]
and elsewhere.

We proved that the clique-transversal set problem is 
NP-complete on cubic graphs [15]. In [13] the authors 
proved that the clique-transversal set problem is NP-hard 
on line graphs with maximum degree 12. This implies that 
the problem is also NP-hard on claw-free graphs with max-
imum degree 12. In this paper we give a polynomial time 
algorithm for the clique-transversal set problem in claw-
free graphs with degree at most 4.

2. Preliminaries

Let us introduce some more notation and terminology. 
By starting with a disjoint union of two graphs G and H
and adding edges joining every vertex of G to every vertex 
of H , one obtains the join of G and H , denoted by G ∨ H . 
The join Cn ∨ K1 of a cycle Cn and a single vertex is re-
ferred to as a n-wheel with n spokes and denoted by Wn . 
Let us call a graph of the form Cn ∨ K2 (n ≥ 4) a double 
n-wheel. The join Pn ∨ K1 of a path Pn and a single vertex 
is referred to as a n-fan with n spokes and denoted by Fn . 
A graph is called a domino if every vertex is contained in 
at most two cliques. Dominos are a sub-class of claw-free 
graphs and were studied by Kloks et al. [14]. Let R(G) be 
the graph obtained from G by identifying all the vertices 
with the same closed neighborhood.

For dominos, the following lemma due to Kloks et 
al. [14].

Lemma 1. (See [14].) If G is a domino, then we have the follow-
ing statements.

(1) There exists a linear time algorithm to enumerate all the 
cliques of G.

(2) The graph R(G) can obtain from G in linear time.
(3) A graph G is a domino if and only if R(G) is a {claw, dia-

mond}-free graph.
(4) A graph G is a domino if and only if G is a {4-wheel, 4-fan, 

claw}-free graph.

Lemma 2. If G is a {claw, diamond}-free graph, then there ex-
ists a polynomial time algorithm for the clique-transversal set 
problem of G.

Proof. Without loss of generality, we may assume that G
is connected and G is not complete. If G is a {claw, di-
amond}-free graph, then we can easily check that G is 
the line graph of a triangle-free graph H , otherwise there 
would be a diamond in G . Graph H can be obtained in 
linear time by the algorithm of Roussopoulos (see [18]). 
So, the clique-transversal set problem of G is equivalent to 
find a minimum edge cover in the graph obtained from H
by deleting pendant vertices. Since this problem is polyno-
mially computed in O (

√|V (H)||E(H)|) by finding a max-
imum matching and extending it greedily so that all ver-
tices are covered [17], the clique-transversal set problem 
of G can be solved in polynomial time. �
Theorem 3. There is a polynomial time algorithm for the clique-
transversal set problem in a domino graph G.

Proof. By Lemma 1, we see that the graph R(G) can be 
obtained from G in linear time, and R(G) is {claw, di-
amond}-free. It follows from Lemma 2 that the clique-
transversal set problem in R(G) can be calculated in 
polynomial time. But clearly τC (G) = τC (R(G)) by the con-
struction of R(G), and hence the clique-transversal set 
problem of G can be calculated in polynomial time. �

Note that each vertex in a claw-free graph with Δ(G) ≤
3 lies in at most two cliques. By Theorem 3, we immedi-
ately get the following result.

Corollary 4. If G is a claw-free graph with Δ(G) ≤ 3, then there 
exists a polynomial time algorithm for the clique-transversal set 
problem.

3. A polynomial time algorithm for CTS problem on 
claw-free graph with maximum degree 4

In this section, we present a polynomial time algorithm 
for clique-transversal set problem in a claw-free graph G
with Δ(G) = 4. For a claw-free graph G with Δ(G) = 4, 
we have the following result by observing that a vertex of 
G is possibly contained in three cliques.

Lemma 5. For a claw-free graph G with Δ(G) ≤ 4, let M(G)

denote the set of vertices of G each of which lies in at least 
three cliques of G. If |M(G)| ≥ 1, then we can construct a claw-
free graph G∗ with Δ(G∗) ≤ 4 and |M(G∗)| < |M(G)|, and a 
minimum clique-transversal set of G can be obtained from a 
minimum clique-transversal set of G∗.
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