
Information Processing Letters 115 (2015) 397–402

Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

A fast algorithm for order-preserving pattern matching ✩

Sukhyeun Cho a, Joong Chae Na b, Kunsoo Park c, Jeong Seop Sim a,∗
a Department of Computer and Information Engineering, Inha University, Incheon 402-751, South Korea
b Department of Computer Science and Engineering, Sejong University, Seoul 143-747, South Korea
c School of Computer Science and Engineering, Seoul National University, Seoul 151-742, South Korea

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 April 2014
Received in revised form 27 September
2014
Accepted 29 October 2014
Available online 1 November 2014
Communicated by Tsan-sheng Hsu

Keywords:
Analysis of algorithms
Order-preserving pattern matching
Order-isomorphism
Horspool algorithm
KMP algorithm

Given a text T and a pattern P , the order-preserving pattern matching (OPPM) problem
is to find all substrings in T which have the same relative orders as P . The OPPM has
been studied in the fields of finding some patterns affected by relative orders, not by their
absolute values. In this paper, we present a method of deciding the order-isomorphism
between two strings even when there are same characters. Then, we show that the bad
character rule of the Horspool algorithm for generic pattern matching problems can be
applied to the OPPM problem and we present a space-efficient algorithm for computing
shift tables for text search. Finally, we combine our bad character rule with the KMP-based
algorithm to improve the worst-case running time. We give experimental results to show
that our algorithm is about 2 to 6 times faster than the KMP-based algorithm in reasonable
cases.

© 2014 Published by Elsevier B.V.

1. Introduction

Given a text T and a pattern P , the order-preserving
pattern matching (OPPM for short) problem is to find
all substrings in T which have the same relative orders
as P . For example, when P = (35, 40, 23, 40, 40, 28, 30)

and T = (10, 20, 15, 28, 32, 12, 32, 32, 20, 25, 15, 25) are
given, P has the same relative orders as the substring
T ′ = (28, 32, 12, 32, 32, 20, 25) of T . In T ′ (resp. P), the
first character 28 (resp. 35) is the 4-th smallest, the sec-
ond character 32 (resp. 40) is the 5-th smallest, the third
character 12 (resp. 23) is the smallest, and so on. See
Fig. 1. The OPPM has been studied in the fields of finding
some patterns affected by relative orders, not by their ab-
solute values. For example, it can be applied to time series
analysis like share prices on stock markets and to musical
melody matching of two musical scores [2].

✩ A preliminary version of this paper appeared in COCOA 2013 [1].

* Corresponding author. Tel.: +82 32 860 7455.
E-mail address: jssim@inha.ac.kr (J.S. Sim).

Recently, several results were presented on the OPPM
problem. For the OPPM problem, the order-isomorphism
must be defined. Kim et al. [2] defined the order-isomor-
phism as the equivalence of permutations converted from
strings with an assumption that all the characters in a
string are distinct. Given T (|T | = n) and P (|P | = m),
they proposed an algorithm for the OPPM problem running
in O (n + m logm) time based on the Knuth–Morris–Pratt
(KMP) algorithm [3]. Meanwhile, Kubica et al. [4] defined
the order-isomorphism as the equivalence of all relative
orders between two strings, and presented a method of
deciding the order-isomorphism of two strings even when
there are same characters. They independently proposed
an algorithm for the OPPM problem based on the KMP
algorithm running in O (n + m logm) time for a general al-
phabet and O (n + m) time for an integer alphabet whose
characters can be sorted in linear time. More recently,
Crochemore et al. [5] introduced order-preserving suffix
trees, and they suggested an algorithm finding all occur-
rences of P in T running in O (m + z) time where z is the
number of occurrences.

http://dx.doi.org/10.1016/j.ipl.2014.10.018
0020-0190/© 2014 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.ipl.2014.10.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:jssim@inha.ac.kr
http://dx.doi.org/10.1016/j.ipl.2014.10.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2014.10.018&domain=pdf

398 S. Cho et al. / Information Processing Letters 115 (2015) 397–402

Fig. 1. An OPPM example for P = (35,40,23,40,40,28,30) and T = (10,20,15,28,32,12,32,32,20,25,15,25).

In this paper, we propose fast algorithms for the OPPM
problem based on the Horspool algorithm [6–8]. Experi-
mental results show that our algorithms are about 2 to 6
times faster than the KMP-based algorithm in reasonable
cases. Our contributions are as follows.

• We present a method of deciding the order-isomor-
phism between two strings even when there are same
characters. We show that Kubica et al.’s method [4]
may decide it incorrectly when there are same charac-
ters.

• We show that the bad character rule can be applied to
the OPPM problem by defining a group of characters as
one character. Kim et al. [2] mentioned the hardness of
applying the Boyer–Moore algorithm [9] to the OPPM
problem. The good suffix rule could be well-defined
but the bad character rule could not be directly ap-
plied to the OPPM problem.

• We present a space-efficient algorithm computing the
shift table for text search based on a factorial num-
ber system. Let q be a size of the group of characters
and |Σ | be the size of an alphabet. Then, our algo-
rithm uses O (q!) space for the shift table while the
algorithms of [6,7] for the generic pattern matching
problem use O (|Σ |q) space for the shift table.

• We also show that our bad character rule can be com-
bined with the KMP-based algorithm to improve the
worst-case running time of [1]. The combined algo-
rithm guarantees O (n + m log m) time for a general
alphabet and O (n + m) time for an integer alphabet
in the worst case when q is a constant.

2. Preliminaries

Let Σ denote an alphabet and σ = |Σ |. Let |x| denote
the length of a string x. A string x is described by a se-
quence of characters (x[0], x[1], . . . , x[|x| − 1]).

Now, we formally define the order-isomorphism and
the order-preserving pattern matching problem. Two
strings x and y of the same length over Σ are called order-
isomorphic, written x ≈ y, if

x[i] ≤ x[j] ⇔ y[i] ≤ y[j] for 0 ≤ i, j < |x| [4].

If two strings x and y are not order-isomorphic, we write
x �≈ y. Given a text T [0..n − 1] and a pattern P [0..m − 1],
we say that T matches P at position i if T [i −m +1..i] ≈ P .
In the previous example shown in Fig. 1, T matches P at

Table 1
μP , LMaxP , LMinP , πP for P = (35, 40, 23, 40, 40, 28, 30).

i 0 1 2 3 4 5 6

P [i] 35 40 23 40 40 28 30
μP [i] 0 1 0 3 4 1 2
LMaxP [i] −1 0 −1 1 3 2 5
LMinP [i] −1 −1 0 1 3 0 0
πP [i] 0 1 1 2 1 1 2

position 9 because T [3..9] ≈ P . The order-preserving pat-
tern matching problem is to find all positions of T matched
with P .

Let us define a prefix table μx of string x:

μx[i] = ∣∣{ j : x[j] ≤ x[i] for 0 ≤ j < i
}∣∣.

See Table 1 for an example.

Lemma 1. For two strings x and y, if x ≈ y, then μx = μy .

Proof. By the assumption that x ≈ y, x[i] ≤ x[j] ⇔ y[i] ≤
y[j] for 0 ≤ i < j < |x|. Hence, μx = μy . �
Lemma 2. Assume that x[0..t] ≈ y[0..t]. For all 0 ≤ i, j ≤ t,
if x[i] < x[j], then y[i] < y[j], and if x[i] = x[j], then y[i] =
y[j].

Proof. We first prove by contradiction the first proposition
(when x[i] < x[j]). Suppose that y[i] ≥ y[j]. Then, by the
definition of order-isomorphism, x[i] ≥ x[j], which contra-
dicts the assumption that x[i] < x[j].

Next, consider the case when x[i] = x[j]. Then, since
x[i] ≤ x[j], y[i] ≤ y[j] by the definition of order-isomor-
phism. Moreover, since x[j] ≤ x[i], y[j] ≤ y[i]. Since y[i] ≤
y[j] and y[j] ≤ y[i], y[i] = y[j]. �

Kubica et al. [4] used location tables called LMax and
LMin for the order information of prefixes of P : Given a
string x, for i = 0, . . . , |x| − 1,

LMaxx[i] = j

if x[j] = max
{

x[k] : k ∈ [0, i − 1], x[k] ≤ x[i]} and

LMinx[i] = j

if x[j] = min
{

x[k] : k ∈ [0, i − 1], x[k] ≥ x[i]}.

Download English Version:

https://daneshyari.com/en/article/10331925

Download Persian Version:

https://daneshyari.com/article/10331925

Daneshyari.com

https://daneshyari.com/en/article/10331925
https://daneshyari.com/article/10331925
https://daneshyari.com

