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Given a text T and a pattern P , the order-preserving pattern matching (OPPM) problem 
is to find all substrings in T which have the same relative orders as P . The OPPM has 
been studied in the fields of finding some patterns affected by relative orders, not by their 
absolute values. In this paper, we present a method of deciding the order-isomorphism 
between two strings even when there are same characters. Then, we show that the bad 
character rule of the Horspool algorithm for generic pattern matching problems can be 
applied to the OPPM problem and we present a space-efficient algorithm for computing 
shift tables for text search. Finally, we combine our bad character rule with the KMP-based 
algorithm to improve the worst-case running time. We give experimental results to show 
that our algorithm is about 2 to 6 times faster than the KMP-based algorithm in reasonable 
cases.

© 2014 Published by Elsevier B.V.

1. Introduction

Given a text T and a pattern P , the order-preserving 
pattern matching (OPPM for short) problem is to find 
all substrings in T which have the same relative orders 
as P . For example, when P = (35, 40, 23, 40, 40, 28, 30)

and T = (10, 20, 15, 28, 32, 12, 32, 32, 20, 25, 15, 25) are 
given, P has the same relative orders as the substring 
T ′ = (28, 32, 12, 32, 32, 20, 25) of T . In T ′ (resp. P ), the 
first character 28 (resp. 35) is the 4-th smallest, the sec-
ond character 32 (resp. 40) is the 5-th smallest, the third 
character 12 (resp. 23) is the smallest, and so on. See 
Fig. 1. The OPPM has been studied in the fields of finding 
some patterns affected by relative orders, not by their ab-
solute values. For example, it can be applied to time series 
analysis like share prices on stock markets and to musical 
melody matching of two musical scores [2].

✩ A preliminary version of this paper appeared in COCOA 2013 [1].
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Recently, several results were presented on the OPPM 
problem. For the OPPM problem, the order-isomorphism 
must be defined. Kim et al. [2] defined the order-isomor-
phism as the equivalence of permutations converted from 
strings with an assumption that all the characters in a 
string are distinct. Given T (|T | = n) and P (|P | = m), 
they proposed an algorithm for the OPPM problem running 
in O (n + m logm) time based on the Knuth–Morris–Pratt 
(KMP) algorithm [3]. Meanwhile, Kubica et al. [4] defined 
the order-isomorphism as the equivalence of all relative 
orders between two strings, and presented a method of 
deciding the order-isomorphism of two strings even when 
there are same characters. They independently proposed 
an algorithm for the OPPM problem based on the KMP 
algorithm running in O (n + m logm) time for a general al-
phabet and O (n + m) time for an integer alphabet whose 
characters can be sorted in linear time. More recently, 
Crochemore et al. [5] introduced order-preserving suffix 
trees, and they suggested an algorithm finding all occur-
rences of P in T running in O (m + z) time where z is the 
number of occurrences.
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Fig. 1. An OPPM example for P = (35,40,23,40,40,28,30) and T = (10,20,15,28,32,12,32,32,20,25,15,25).

In this paper, we propose fast algorithms for the OPPM 
problem based on the Horspool algorithm [6–8]. Experi-
mental results show that our algorithms are about 2 to 6 
times faster than the KMP-based algorithm in reasonable 
cases. Our contributions are as follows.

• We present a method of deciding the order-isomor-
phism between two strings even when there are same 
characters. We show that Kubica et al.’s method [4]
may decide it incorrectly when there are same charac-
ters.

• We show that the bad character rule can be applied to 
the OPPM problem by defining a group of characters as 
one character. Kim et al. [2] mentioned the hardness of 
applying the Boyer–Moore algorithm [9] to the OPPM 
problem. The good suffix rule could be well-defined 
but the bad character rule could not be directly ap-
plied to the OPPM problem.

• We present a space-efficient algorithm computing the 
shift table for text search based on a factorial num-
ber system. Let q be a size of the group of characters 
and |Σ | be the size of an alphabet. Then, our algo-
rithm uses O (q!) space for the shift table while the 
algorithms of [6,7] for the generic pattern matching 
problem use O (|Σ |q) space for the shift table.

• We also show that our bad character rule can be com-
bined with the KMP-based algorithm to improve the 
worst-case running time of [1]. The combined algo-
rithm guarantees O (n + m log m) time for a general 
alphabet and O (n + m) time for an integer alphabet 
in the worst case when q is a constant.

2. Preliminaries

Let Σ denote an alphabet and σ = |Σ |. Let |x| denote 
the length of a string x. A string x is described by a se-
quence of characters (x[0], x[1], . . . , x[|x| − 1]).

Now, we formally define the order-isomorphism and 
the order-preserving pattern matching problem. Two
strings x and y of the same length over Σ are called order-
isomorphic, written x ≈ y, if

x[i] ≤ x[ j] ⇔ y[i] ≤ y[ j] for 0 ≤ i, j < |x| [4].

If two strings x and y are not order-isomorphic, we write 
x �≈ y. Given a text T [0..n − 1] and a pattern P [0..m − 1], 
we say that T matches P at position i if T [i −m +1..i] ≈ P . 
In the previous example shown in Fig. 1, T matches P at 

Table 1
μP , LMaxP , LMinP , πP for P = (35, 40, 23, 40, 40, 28, 30).

i 0 1 2 3 4 5 6

P [i] 35 40 23 40 40 28 30
μP [i] 0 1 0 3 4 1 2
LMaxP [i] −1 0 −1 1 3 2 5
LMinP [i] −1 −1 0 1 3 0 0
πP [i] 0 1 1 2 1 1 2

position 9 because T [3..9] ≈ P . The order-preserving pat-
tern matching problem is to find all positions of T matched 
with P .

Let us define a prefix table μx of string x:

μx[i] = ∣∣{ j : x[ j] ≤ x[i] for 0 ≤ j < i
}∣∣.

See Table 1 for an example.

Lemma 1. For two strings x and y, if x ≈ y, then μx = μy .

Proof. By the assumption that x ≈ y, x[i] ≤ x[ j] ⇔ y[i] ≤
y[ j] for 0 ≤ i < j < |x|. Hence, μx = μy . �
Lemma 2. Assume that x[0..t] ≈ y[0..t]. For all 0 ≤ i, j ≤ t, 
if x[i] < x[ j], then y[i] < y[ j], and if x[i] = x[ j], then y[i] =
y[ j].

Proof. We first prove by contradiction the first proposition 
(when x[i] < x[ j]). Suppose that y[i] ≥ y[ j]. Then, by the 
definition of order-isomorphism, x[i] ≥ x[ j], which contra-
dicts the assumption that x[i] < x[ j].

Next, consider the case when x[i] = x[ j]. Then, since 
x[i] ≤ x[ j], y[i] ≤ y[ j] by the definition of order-isomor-
phism. Moreover, since x[ j] ≤ x[i], y[ j] ≤ y[i]. Since y[i] ≤
y[ j] and y[ j] ≤ y[i], y[i] = y[ j]. �

Kubica et al. [4] used location tables called LMax and 
LMin for the order information of prefixes of P : Given a 
string x, for i = 0, . . . , |x| − 1,

LMaxx[i] = j

if x[ j] = max
{

x[k] : k ∈ [0, i − 1], x[k] ≤ x[i]} and

LMinx[i] = j

if x[ j] = min
{

x[k] : k ∈ [0, i − 1], x[k] ≥ x[i]}.
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