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Abstract

We present a proof of completeness of hyper-resolution based on the fixpoint semantics of disjunctive logic programs. This
shows that hyper-resolution can be studied from the point of view of logic programming.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Resolution was introduced by Robinson in his land-
mark paper [24] in 1965 as a mechanizable method
for detecting the unsatisfiability of a given set of for-
mulae of classical first-order logic. It revolutionized
the field of automated reasoning, and since then, many
refinements of resolution have been proposed by re-
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searchers in the field in order to cut down the search
space and increase efficiency. One of the most im-
portant refinements of resolution is hyper-resolution,
which was also introduced by Robinson [23] in the
same year 1965. Hyper-resolution constructs a resol-
vent of a number of clauses at each step. Thus it con-
tracts a sequence of bare resolution steps into a single
inference step and eliminates interactions among in-
termediary resolvents, and interactions between them
and other clauses.

Resolution and hyper-resolution have been well
studied. There are a number of well-known proofs of
completeness of resolution and hyper-resolution. The
classical proofs of completeness of hyper-resolution
are often based on proofs of completeness of resolu-
tion. In Leitsch’s book on resolution [12], complete-
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ness results are proved using the semantic tree tech-
nique [11]. Some other methods for proving complete-
ness of resolution and hyper-resolution are Bachmair
and Ganzinger’s forcing technique [3], de Nivelle’s
resolution game technique [7], Boyer’s excess literal
technique (see [6]), and a proof-theoretic method by
Goubault-Larrecq [9].

There is a close relationship between the theory
of logic programming and resolution. A refinement
of resolution for the Horn fragment, called SLD-
resolution in [1], was first described by Kowalski [10]
for logic programming. It is a top-down procedure for
answering queries in definite logic programs. On the
other hand, a bottom-up method for answering queries
is based on fixpoint semantics of logic programs and
was first introduced by van Emden and Kowalski [25]
using the direct consequence operatorTP . This opera-
tor is monotonic, continuous, and has the least fixpoint
TP ↑ω = ⋃ω

n=0 TP ↑n, which forms the least Herbrand
model of the given logic programP .

In [16], Minker and Rajasekar extended the fixpoint
semantics to disjunctive logic programs. Their direct
consequence operator, denoted byT I

P , iterates over
model-states, which are sets of disjunctions of ground
atoms. This operator is also monotonic, continuous,
and has a least fixpoint which is a least model-state
characterizing the given programP .

Fixpoint semantics of logic programs are closely
related to hyper-resolution. More precisely, the intu-
ition behind hyper-resolution is the same as that be-
hind the fixpoint semantics of disjunctive logic pro-
grams, as has been observed by researchers in logic
programming. There are, however, the following dif-
ferences: a disjunctive logic program is a set ofnon-
negativeclauses, and the direct consequence operator
(as defined in [16,14])simultaneouslyapplies infer-
ence steps for allgroundinstances of clauses.

Despite the fact that a number of resolution systems
have been implemented in Prolog, the relationship be-
tween the theory of logic programming and the theory
of resolution has been, in our opinion, mostly one-
directional: logic programming has been studied from
the point of view of resolution. Our thesis is that hyper-
resolution can be studied from the point of view of
logic programming. In this paper, we give a proof of
completeness of hyper-resolution based on the fixpoint
semantics of disjunctive logic programs.

2. Preliminaries

First-order logic is considered in this work and we
assume that the reader is familiar with it. We assume
we are given a finite set of first-order formulae, which
we wish to test for satisfiability. We now give the most
important definitions for our work.

2.1. Herbrand models

Let L be the underlying first order language for the
considered set of formulae. Normally, we assume that
L is defined by the constants, function symbols and
predicate symbols appearing in the considered set of
formulae.

The Herbrand universeUL for L is the set of all
ground terms, which can be formed out of the con-
stants and function symbols appearing inL. If L has
no constants, we add some constant, saya, to form
ground terms.

An Herbrand interpretationfor L is an interpreta-
tion for L such that:

• The domain of the interpretation is the Herbrand
universeUL;

• Constants inL are assigned themselves inUL;
• If f is an n-ary function symbol inL, then the

mapping from(UL)n to UL defined by(t1, . . . ,

tn) → f (t1, . . . , tn) is assigned tof .

Since the assignment to constants and function
symbols is fixed in Herbrand interpretations, we can
identify an Herbrand interpretation with the set of all
ground atoms which are true with respect to that inter-
pretation.

Let S be a set of closed formulae ofL. An Her-
brand modelof S is an Herbrand interpretation forL
which is a model forS.

2.2. Unification

A substitution is a finite setθ = {x1 := t1, . . . ,

xn := tn}, wherex1, . . . , xn are different variables,t1,
. . . , tn are terms, andti �= xi for all 1� i � n. By ε we
denote theempty substitution.

An expressionis either a term or a formula without
quantifiers, and asimple expressionis either a term or
an atom.
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