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Exactk-NN queries on clustered SVD datasets
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Abstract

Clustered SVD–CSVD, which combines clustering and singular value decomposition (SVD), outperforms SVD applied
globally, without first applying clustering. Datasets of feature vectors in various application domains exhibit local correlations,
which allow CSVD to attain a higher dimensionality reduction than SVD for the same normalized mean square error. We specify
an exact method for processingk-nearest-neighbor queries for CSVD, which ensures 100% recall and is experimentally shown
to require less CPU processing time than the approximate method originally specified for CSVD.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Content based retrieval (CBR) is concerned with
retrieving objects represented by their feature vec-
tors. Content based image retrieval (CBIR) is a special
case, where features are based on texture, color, shape,
etc. [1]. Similarity of two objects is determined by
the proximity of the endpoints of theN -dimensional
feature vectors representing them. Proximity is deter-
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mined by the Euclidean distance or some other simi-
larity measures [2].

Range andk-nearest-neighbor (k-NN) queries are
two popular similarity search paradigms. Range
queries retrieve all points within distanceε of a query
point, whilek-NN queries retrieve thek objects with
the closest feature vectors to the query point. It is easy
to see that ak-NN query is tantamount to the process-
ing of a range query with an appropriate radius, but a
k-NN query has the advantage that there is no need to
specifyε.

For a very large number of objects and a high
dimensionality for feature vectors, the processing of
k-NN queries on anM × N dataset via a sequential
scan can be quite costly. CPU time is dominated by
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the cost of computing Euclidean distances, since the
cost of inserting nearest neighbor candidates into a
heap is negligibly small. It is especially important to
minimize the number of objects inspected for more
complex similarity measures [2].

Singular Value Decomposition (SVD) method or
Principal Component Analysis (PCA) are equivalent
methods, which can be used for dimensionality re-
duction [5]. The processing ofk-NN queries with a
reduced number of dimensions is less costly, but yields
approximate results, as quantified by recall and preci-
sion [5] (see Section 2). Most multidimensional index-
ing structures [6] lose their efficiency when process-
ing k-NN queries on high dimensional data [5,2], so
dimensionality reduction is another method to cope
with the “curse of dimensionality”. This paper is con-
cerned with the cost of reducing CPU time using linear
scans of associated datasets. Multidimensional index-
ing methods to reduce query processing cost are dis-
cussed in Section 4.

Given anM × N matrixX of feature vectors, PCA
first computes and then decomposes its covariance ma-
trix: C = XtX/M = V ΛV t , whereV holds the eigen-
vectors, andΛ is the diagonal matrix of eigenvalues
[5,7]. The columns ofX have a zero mean and stu-
dentization (division by the standard deviation) before
applying SVD or PCA is required when the columns
of X have highly variable magnitudes. All eigenval-
ues are positive, since the covariance matrix is positive
semi-definite [7]. We assume, without loss of gener-
ality, that the eigenvaluesλi , 1 � i � N , are in non-
increasing order. The rank of the matrix is determined
by the number of eigenvalues which are not close to
zero.

Alternatively, the singular value decomposition for
matrix X is: X = USV t , whereS is the diagonal ma-
trix of singular values:sn = √

Mλn, 1 � n � N , and
V is the matrix of eigenvectors as before. TheNormal-
ized Mean Square Error (NMSE) is computed with
respect toY = XV , given thatp � N of its features
(columns) are retained:
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The Karhunen–Loeve transform, which minimizes
the NMSE for a given number of retained dimensions

is only applicable to static datasets [5]. A straight-
forward application of SVD or PCA to the original
dataset benefits from global correlations, but most
real-life datasets exhibit local correlations, which ben-
efit theClustering and Singular Value Decomposition
(CSVD) method [3]. In fact clustering and SVD can
be applied recursively, even starting with SVD [14,3].
Experimental results show that for the same value of
the NMSE, CSVD achieves a higher dimensionality
reduction, i.e., a fewer number of retained dimensions
than when SVD alone is applied to the global dataset.
Conversely, given the number of dimensions to be re-
tainedp overall clusters, the minimum NMSE is at-
tained [15,3].

A survey of methods related to CSVD is given in
[3], but the method in [8], which deals with the dy-
namic insertion of data is also very relevant. Applying
SVD to dynamic data is unacceptably expensive, since
the SVD computation would have to be repeated for
each insertion. Clustering the dataset, e.g., by build-
ing a multidimensional index, allows this computation
to be done on a subset of data. To save costs even fur-
ther points can be initially inserted into the appropriate
clusters, or nodes of the index, without a local SVD re-
computation, but using the metadata at each node for
coordinate transformation and reducing the number of
dimensions. The SVD computation is invoked period-
ically, when the recall fork-NN queries drops below a
certain threshold.

The approximate algorithm fork-NN queries pre-
sented in [15] may result in unacceptably small values
of recall for higher values of the NMSE. This issue is
dealt with in [5] by conducting an offline experiment
to determine a sufficiently largek∗ > k for issuing the
k-NN query to yield an acceptable value of recall (see
Section 3). In this paper we propose an exact algorithm
to processk-NN queries on dimensionality reduced
clusters produced by CSVD. The algorithm is an ex-
tension of the algorithm specified in [10,11], which is
based on the lower-bounding property [10,5,11]. Ex-
perimental results with two datasets show that the new
algorithm requires less CPU time than the approxi-
mate algorithm, which is issued with a known value
of k∗.

The paper is organized as follows. Section 2 de-
scribes the CSVD method and thek-NN search al-
gorithm. Experimental results are given in Section 3,
followed by conclusions in Section 4.



Download English Version:

https://daneshyari.com/en/article/10331975

Download Persian Version:

https://daneshyari.com/article/10331975

Daneshyari.com

https://daneshyari.com/en/article/10331975
https://daneshyari.com/article/10331975
https://daneshyari.com

