
Omega 37 (2009) 155–164
www.elsevier.com/locate/omega

Efficient composite heuristics for total flowtime minimization in
permutation flow shops�

Xiaoping Lia,b,∗, Qian Wanga,b, Cheng Wuc

aSchool of Computer Science & Engineering, Southeast University, 210096 Nanjing, PR China
bKey Laboratory of Computer Network and Information Integration (Southeast University), Ministry of Education, PR China

cDepartment of Automation, Tsinghua University, 100084, Beijing, PR China

Received 8 November 2006; accepted 10 November 2006
Available online 12 January 2007

Abstract

In this paper, permutation flow shops with total flowtime minimization are considered. General flowtime computing (GFC)
is presented to accelerate flowtime computation. A newly generated schedule is divided into an unchanged subsequence and a
changed part. GFC computes total flowtime of a schedule by inheriting temporal parameters from its parent in the unchanged
part and computes only those of the changed part. Iterative methods and LR (developed by Liu J, Reeves, CR. Constructive and
composite heuristic solutions to theP ‖�Ci scheduling problem, European Journal of Operational Research 2001; 132:439–52)
are evaluated and compared as solution improvement phase and index development phase. Three composite heuristics are
proposed in this paper by integrating forward pair-wise exchange-restart (FPE-R) and FPE with an effective iterative method.
Computational results show that the proposed three outperform the best existing three composite heuristics in effectiveness and
two of them are much faster than the existing ones.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Composite heuristic; Flow shop; Scheduling; Flowtime

1. Introduction

Flow shop scheduling is an important manufacturing
system widely existing in industrial environments. A
flow shop can be described as n jobs being processed
on m machines and each job having the same machine
order [1]. There are many kinds of flow shops, such as

� This manuscript was processed by Associate Editor Semple.
∗ Corresponding author. School of Computer Science & Engineer-

ing, Southeast University, 210096 Nanjing, PR China.
Tel.: +86 25 83790901.

E-mail addresses: xpli@seu.edu.cn (X. Li), qwang@seu.edu.cn
(Q. Wang), wuc@tsinghua.edu.cn (C. Wu).

0305-0483/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.omega.2006.11.003

blocking flow shops [2], no-wait flow shops [3], and
so on. Nearly all of them are derived from permutation
flow shop, the job-order on each machine follows the
same order. Makespan and total flowtime (or an equiva-
lent mean flowtime if all machines are available at time
zero) are two important performance measures in per-
mutation flow shops. In practice, total flowtime is usu-
ally considered because it can lead to stable or uniform
utilization of resources, rapid turn-around of jobs, and
minimization of in-process inventory [4,5].

Although the makespan and total flowtime minimiza-
tion in flow shops are NP-complete [6], it seems that
NEH (introduced by Nawaz, Enscore and Ham, Omega
[7]) is the best heuristic for makespan minimization [8].

http://www.elsevier.com/locate/omega
mailto:xpli@seu.edu.cn
mailto:qwang@seu.edu.cn
mailto:wuc@tsinghua.edu.cn


156 X. Li et al. / Omega 37 (2009) 155–164

However, so far no method seems to be the best for total
flowtime minimization. Heuristics and meta-heuristics
are commonly studied for flow shops. A meta-heuristic
method always obtains better solution than a heuristic
does but needs much more CPU-time, which cannot
meet the real time requirements in practice, especially
for large-scale cases. Thus, it is essential to develop ef-
fective heuristics to find good solutions in limited CPU-
time for practical manufacturing systems.

For decades, many heuristics have been developed
for the problems considered. Though NEH is claimed
the best for makespan minimization in flow shops, it is
not effective even for total flowtime ones [9]. Heuris-
tics presented by Gupta [10], Rajendran and Chaudhuri
[11], Rajendran [12], Ho [13] and Wang et al. [14] were
efficient algorithms. Some efficient constructive heuris-
tics are FL (proposed by Framinan and Leisten [15]),
WY (presented by Woo and Yim [16]) and RZ (devel-
oped by Rajendran and Ziegler [17]). FL integrates NEH
insertion with pair-wise exchange. In NEH insertion, an
unscheduled job of the seed generated by some rule is
inserted into every possible slot of the current solution
(a schedule/partial schedule) and the best one is selected
as the new current solution. A pair-wise exchange gen-
erates solutions by exchanging positions of every pair
of jobs to improve the current solution. If the current
solution is worse than the best of the generated ones,
it is replaced with the best. WY is also derived from
NEH but no seed is predetermined and all unscheduled
jobs perform job-insertion. RZ is founded on a different
job-insertion from NEH, in which a seed is a result of
sorting jobs with weighted processing times and it is set
as the current solution. Every job of the seed performs
job-insertion subsequent to the current solution without
the inserted job. By comparing WY against RZ [16,18],
it is found that RZ outperforms WY for small instances
but the relative performance of WY improves with the
number of jobs and finally WY outperforms RZ. Com-
putational results of Framinan and Leisten [15] show
that FL outperforms both WY and RZ for majority of
the randomly generated instances. The temporal com-
plexities of FL and WY are O(n4m), whereas RZ is
O(n3m).

Recently, many composite heuristics have been pro-
posed, such as IH1–IH7 (described by Allahverdi and
Aldowaisan [18]), IH7-FL (given by Framinan and
Leisten [15]), FLR1 and FLR2 (presented by Framinan,
Leisten and Ruiz-Usano [19]). Of these heuristics,
FLR2, IH7-FL, and FLR1 seem to be the most efficient
ones, all of which adopt FL to construct a solution or
improve the current solution. Most existing heuristics
improve their solutions only by some one-pass method.

However, most solutions can be greatly improved by
an iterative method, which will be shown by the three
composite heuristics proposed in this paper.

The paper is organized as follows. The problem
is described in Section 2. In Section 3, insertion and
pair-wise exchange-based heuristics are improved by
general flowtime computing (GFC). Three iterative
composite heuristics are proposed in Section 4. Com-
putational results are described in Section 5, followed
by conclusions in Section 6.

2. Problem description

A flow shop is a scheduling problem in which each
job in �= {J1, . . . , Jn} is processed sequentially on m
machines M1, . . . , Mm. Schedule �n is a permutation
of the n jobs, which can be denoted as (J[1], . . . , J[n])
in which J[i] ∈ � is the ith (i = 1, . . . , n) job in �n.
To denote the start of any schedule, a dummy job is
introduced with zero processing times and explicitly
denoted as J[0]. Then, �n can also be represented as
(J[0], J[1], . . . , J[n]). Traditionally, such a permutation
is intuitively depicted by Gantt chart (Fig. 1 shows the
Gantt chart of a schedule of permutation flow shop). Let
Oi,j be the operation of job j (j=0, 1, . . . , n) processed
on machine i (i = 1, 2, . . . , m) and ti,j the processing
time (given in the rectangles in Fig. 1).

Let Ci,j (i= 1, 2, . . . , m, j = 1, 2, . . . , n) be the fin-
ishing time of Oi,[j ] in schedule �n. The starting time
of Oi,[j ] is the maximum of Ci−1,j and Ci,j−1. Either
Oi−1,[j ] or Oi,[j−1] is called the immediate predeces-
sor of Oi,[j ] if the finishing time of the former equals
the starting time of the latter. Thus, Oi,[j ] (j > 0) has at
least one immediate predecessor. On the contrary, every
operation has no more than two immediate successors.
Therefore, the Gantt chart of �n can be replaced with
a weighted binary tree (WBT for short, a specially di-
rected acyclic graph) G = (V , E), of which nodes are
operations labeled by corresponding processing times as
weights. Edges of WBT can be constructed as follows.
Starting from u0 = O1,[0] as Root, J[j ] (j = 1, . . . , n)

can be picked up sequentially from �n and connected to
each Oi,[j ] with its immediate predecessor (randomly

5

3

7

2

6

4

5

3

6

5

8

4

8

2

4

5

4

7

2

1

Fig. 1. Gantt chart of an instance.



Download English Version:

https://daneshyari.com/en/article/1033222

Download Persian Version:

https://daneshyari.com/article/1033222

Daneshyari.com

https://daneshyari.com/en/article/1033222
https://daneshyari.com/article/1033222
https://daneshyari.com

