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a  b  s  t  r  a  c  t

Modal  analysis  of  multi-body  systems  is broadly  used  to study  the  behavior  and  controller  design  of
dynamic  systems.  In both  cases,  model  reduction  that does  not  degrade  accuracy  is necessary  for  the
efficient  use  of  these  models.  Previous  work  by  the  author  addressed  the  reduction  of  modal  represen-
tations  by  eliminating  entire  modes  or  individual  modal  elements  (inertial,  compliant,  resistive).  In that
work, the bond  graph  formulation  was  used  to model  the  system  and the  modal  decomposition  was
limited  to systems  with  proportional  damping.  The  objective  of the current  work  is to  develop  a  new
methodology  such  that  model  reduction  can  be  implemented  to modal  analysis  of  multi-body  systems
with  non-proportional  damping  that  were  not  modeled  using  bond  graphs.  This extension  also  makes  the
methodology  applicable  to realistic  systems  where  the  importance  of  modal  coupling  terms  is  quantified
and potentially  eliminated.  The  new  methodology  is demonstrated  through  an  illustrative  example.

© 2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Current modeling techniques and simulation tools provide engi-
neers with a variety of options when it comes to modeling of
new or existing systems. These tools and techniques are powerful
and extensively used in everyday engineering, nevertheless further
improvements on modeling decisions and model complexity issues
would make them more efficient. Specifically, a main disadvantage
is that modeling techniques and simulation tools require sophis-
ticated users who are often not domain experts and thus lack the
ability to effectively utilize the available tools to uncover the impor-
tant design trade-offs. Another drawback is that models are often
large and complicated with many parameters, making the physi-
cal interpretation of the model outputs, even by domain experts,
difficult. This is particularly true when “unnecessary” features are
included in the model.

A variety of algorithms have been developed and implemented
to help automate the production of proper models of dynamic
systems. Wilson and Stein [1] developed the model order deduc-
tion algorithm (MODA) that deduces the required system model
complexity from subsystem models of variable complexity using
a frequency-based metric. They also defined proper models as the
models with physically meaningful states and parameters that are
of necessary but sufficient complexity to meet the engineering and
accuracy objectives. Additional work on deduction algorithms for
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generating proper models in an automated fashion has extended
the functionality of MODA [2–4]. These algorithms have also been
implemented and demonstrated in an automated modeling envi-
ronment [5].

In an attempt to overcome the limitations of the frequency-
based metrics, Louca et al. [6] introduced a new model reduction
technique that also generates proper models. This approach uses
an energy-based metric (element activity) that in general, can be
applied to nonlinear systems [7], and considers the importance
of all energetic elements (generalized inductance, capacitance and
resistance). The contribution of each energy element in the model
is ranked according to the activity metric under specific excita-
tion. Elements with small contribution are eliminated in order to
produce a reduced model. The activity metric was also used as a
basis for even further reduction, through partitioning a model into
smaller and decoupled submodels [8].

Beyond the physical-based model reduction, modal decomposi-
tion can also be used to model and analyze continuous and discrete
systems [9–12]. One of the advantages of modal decomposition is
the ability to directly adjust (i.e., reduce) model complexity since
all modes are orthogonal to each other. The reduction of such
modal decomposition models is mostly based on frequency, and
the user defined frequency range of interest (FROI) determines
the frequencies that are important for a specific scenario. In this
case, modes with frequencies within the FROI are retained in the
reduced model and modes outside this range are eliminated. As
expected, mode truncation introduces error in the predictions that
can be measured and adjusted based on the accuracy requirements
[13,14].
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The element activity metric provides more flexibility than
frequency-based metrics, which address the issue of model com-
plexity by only the frequency content of the model. In contrast,
the activity metric considers the energy flow in the system, and
therefore, the importance of all energy elements in the model can
be described. Previous work by the author addressed the devel-
opment and reduction of modal representations using the bond
graph formulation and using the activity metric [15,16]. This work
introduced a methodology that reduces the model complexity by
eliminating entire modes or partial modes through modal elements
(inertial, compliant, resistive). The identification and elimination of
insignificant elements was performed with the use of the activ-
ity metric and model order reduction algorithm (MORA). This
approach has advantages over frequency-based reduction tech-
niques; however, it has a significant limitation in that it can only
be applied to systems with proportional damping and thus is not
able to be applied to realistic systems.

The objective of the current work is to develop a methodol-
ogy that overcomes the limitations of the author’s previous work,
such that modal analysis and model reduction can be applied to a
more general class of systems with non-proportional damping. In
addition, the activity metric will be formulated for systems that
are modeled with second order ordinary differential equations
(ODE), rather than bond graphs and first order ODEs that were
used in previous work. Second order ODEs are typically derived
from Lagrange’s equations or Newton’s law. These two  additions
will make the activity metric a more appealing model reduction
methodology that can be applied to realistic systems.

This paper is organized as follows: first, background about the
energy-based metric and modal decomposition are provided. Next,
the equation formulation and modal decomposition of multi-body
systems with non-proportional damping is presented. Then, the
activity analysis of all modal elements is introduced, along with the
closed-form expressions of the steady state activities. An illustra-
tive example of a linear quarter car model is also presented, in order
to demonstrate the development of its modal decomposition and
the evaluation of the coupling terms’ importance using the activity
metric. Finally, in the last section, discussion and conclusions are
given.

2. Background

2.1. Energy-based model reduction

The original work on the energy-based metric for model reduc-
tion is briefly described here since it is the foundation of the
contributions in this paper. The main idea behind this model reduc-
tion technique is to evaluate the “element activity” of the individual
energy elements of a complex system model under a stereotypic set
of inputs and initial conditions. The activity of each energy element
establishes an importance hierarchy for all elements. Those below
a user-defined threshold of acceptable level of activity are elim-
inated from the model. A reduced model is then generated and a
new set of governing differential equations is derived. More details,
extensions, and applications of this approach are given in previous
publications [7,17–19].

The activity metric has been previously formulated for systems
with nonlinearities in both the element constitutive laws and kine-
matics. In this work, the activity metric is applied to linear systems
for which analytical expressions for the activity can be derived, and
therefore, avoid the use of numerical time integration that could
be cumbersome. The analysis is further simplified if, in addition to
the linearity assumption, the system is assumed to have a single
sinusoidal excitation, and only the periodic steady state response
is examined. These assumptions are motivated from Fourier

analysis where an arbitrary function can be decomposed into a
series of harmonics. Using this decomposition, the activity anal-
ysis can be performed as a function of frequency in order to study
the frequency dependency of the energy elements in a dynamic
system.

2.1.1. Element activity for linear systems
The starting point of a model reduction process is a system

model, which typically includes complexity that has minimal con-
tribution to the accuracy of the model’s dynamic response. Thus,
the goal of a reduction algorithm is to identify this “unnecessary”
complexity in order to generate a reduced model that is easier to
analyze yet accurate. One approach to accomplish this is the activity
metric that was previously defined by the author [7]. The activity
metric is outlined below as it was originally developed for models
of multi-energy systems that are represented by first order ODEs.

Models of dynamic systems consist of physical energy ele-
ments that can store (inertia and stiffness) or dissipate (resistance)
energy. In addition, these can be considered as generalized ele-
ments in order to have the ability to model multi-energy systems,
i.e., translational mechanical, rotational mechanical, electrical and
hydraulic. A quantity that can be defined for all energy elements in
a model and it is independent of its energy domain, is power. How-
ever, power is time dependent and thus not a suitable modeling
metric.

A measure of the power response of a dynamic system, which
has physical meaning and a simple definition, is used to develop the
modeling metric, element activity (or simply “activity”). Element
activity, A, is defined for each energy element as:

A =
�∫
0

∣∣P(t)
∣∣ · dt (1)

where P(t) is the element power and � is the time over which the
model has to predict the system behavior. The activity has units of
energy, representing the amount of energy that flows in and out
of the element over the given time �. The energy that flows in and
out of an element is a measure of how active this element is (how
much energy passes through it), and consequently the quantity in
Eq. (1) is termed activity.

Element power is the product of generalized effort and flow,
which for the linear mechanical domain is the product of force and
velocity. Given this definition the activity can be rewritten as:

A =
�∫
0

∣∣P(t)
∣∣ · dt =

�∫
0

∣∣F(t) · v(t)
∣∣ · dt (2)

The multi-body system is assumed to have km mass, kk stiffness
and kb damping elements, thus, ke = km + kk + kb energy elements.
Element power is calculated by using either the effort or flow and
the constitutive law, and therefore, only ke outputs are required for
calculating the activity of all elements in the system. The outputs
are selected to be velocity, force, and velocity for mass, stiffness,
and damping elements, respectively. The duals of these variables
can also be used for calculating element power without loss of
generality. Also, the parameters m,  k and b are known constants rep-
resenting the linear constitutive law coefficients of mass, stiffness
and damping, respectively. With the above definitions, the power
of each energy element is calculated as:

Mass : Pm = Fm · vm = (m · v̇m) · vm

Stiffness : Pk = Fk · vk = Fk ·
(

Ḟk

k

)
Damping : Pb = Fb · vb = (b  · vb) · vb

(3)
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