
Journal of Computational Science 5 (2014) 1–11

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Sub-exponential graph coloring algorithm for stencil-based
Jacobian computations

Michael Lülfesmanna,∗, Ken-ichi Kawarabayashib,1

a Institute for Scientific Computing, Center for Computational Engineering Science, RWTH Aachen University, D-52056 Aachen, Germany
b National Institute of Informatics and JST ERATO Kawarabayashi Large Graph Project, 2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, Japan

a r t i c l e i n f o

Article history:
Received 3 October 2012
Received in revised form 16 June 2013
Accepted 22 June 2013
Available online 5 July 2013

MSC:
05C15
05C50
05C85
90C27
65D25
65F50

Keywords:
Grid coloring algorithm
Divide-and-conquer approach
Lipton–Tarjan separator
Stencil discretization
Derivative computation
Sparsity exploitation

a b s t r a c t

Partial differential equations can be discretized using a regular Cartesian grid and a stencil-based method
to approximate the partial derivatives. The computational effort for determining the associated Jacobian
matrix can be reduced. This reduction can be modeled as a (grid) coloring problem. Currently, this problem
is solved by using a heuristic approach for general graphs or by developing a formula for every single
stencil. We introduce a sub-exponential algorithm using the Lipton–Tarjan separator in a divide-and-
conquer approach to compute an optimal coloring. The practical relevance of the algorithm is evaluated
when compared with an exponential algorithm and a greedy heuristic.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the field of computational science and engineering, partial dif-
ferential equations (PDEs) are often used to formulate real-world
phenomenons. The formulation of the PDEs is given as a math-
ematical function f, e.g., f(�) = �� = 0 for smooth � : [0, 1]2 → R,
which is implemented as a computer program in a program-
ming language like Fortran, C++, Matlab, etc. PDEs can be solved
numerically by first discretizing the computational domain, e.g., a
regular Cartesian grid together with a stencil depending on f, and
then using a Newton–Raphson-type algorithm. This will require
evaluating the sparse Jacobian of f on the discretized domain,
which is a very compute-intensive operation for complicated PDEs.
Using a Newton–Raphson-type algorithm to solve a non-linear

∗ Corresponding author.
E-mail address: michael.luelfesmann@rwth-aachen.de (M. Lülfesmann).

1 Research partly supported by Japan Society for the Promotion of Science, Grant-
in-Aid for Scientific Research, by C&C Foundation, by Kayamori Foundation and by
Inoue Research Award for Young Scientists.

system, Coleman and Xu measured a runtime of around 15,000 s
[1]. Furthermore, they stated that with increasing problem size
the evaluation of f dominates the solving approach. Compared to
the matrices considered in this article their considered system is
quite small. It should not be ignored that in time-dependent simu-
lations the Jacobian matrix must be repeatedly evaluated in every
timestep.

The Jacobian matrix of the computer program f is often either
approximated by divided differencing or computed exactly using
automatic differentiation. For both approaches, the computing time
to evaluate the Jacobian is a multiple of the time to evaluate the
computer program. To reduce the computational effort to deter-
mine the matrix in large-scale problems, it is crucial to exploit any
available structure. The nonzero structure of the sparse Jacobian
matrix is precisely defined by the stencil and the size of the regular
grid. The exploitation of the sparsity structure of the matrix can be
modeled as a combinatorial optimization problem in terms of the
grid.

Explicit solutions of the combinatorial optimization problem
for regular grids are known for various special stencils [2–4]. Fur-
ther solutions are given in [5] where the authors looked at a more

1877-7503/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2013.06.002

dx.doi.org/10.1016/j.jocs.2013.06.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2013.06.002&domain=pdf
mailto:michael.luelfesmann@rwth-aachen.de
dx.doi.org/10.1016/j.jocs.2013.06.002

2 M. Lülfesmann, K.-i. Kawarabayashi / Journal of Computational Science 5 (2014) 1–11

general problem. Recently, stencil-based computations on grids
with periodic boundary conditions have been analyzed [6]. A more
comprehensive survey and comparison of the optimization prob-
lem in terms of the regular grid, the Jacobian matrix and a bipartite
graph are given in [7,8]. Nevertheless, investigating a formula for
every single stencil is time-consuming and, above all, complex in
more than two dimensions. Especially while using semi-automated
stencil generators [9], an explicit solution for the generated stencil
cannot be determined automatically with this approach.

A graph coloring is an assignment of nonzero values 1, . . ., p, the
so-called colors, to vertices of a graph by following some rules. The
optimization problem can be formulated as a coloring of the grid
points. The optimal solution is a coloring of the grid points with the
smallest number of colors possible. Such a coloring is denoted as
minimal coloring or optimal coloring. For general graphs this opti-
mization problem is NP-hard [10]. Therefore, greedy heuristics are
widely used to determine an usually not optimal solution [11,12]
in reasonable time. Using an exhaustive search strategy to com-
pute an optimal solution would be very time-consuming and only
applicable to very small Jacobian matrices.

We introduce a sub-exponential divide-and-conquer algorithm
using separators to exactly solve the optimization problem for
regular grids and arbitrary stencils in two or more dimensions.
Divide-and-conquer is one of the oldest and most widely used
techniques for designing efficient algorithms. Divide-and-conquer
algorithms partition their inputs into two or more independent
subproblems, solve those subproblems recursively, and then com-
bine the solutions to those subproblems to obtain their final output.
This strategy can be successfully applied to several graph problems,
provided we can quickly separate the graph into roughly equal
subgraphs. A vertex separator is a set of vertices which splits a
graph in two non-connected components. This concept was first
adapted by Lipton and Tarjan [13]. The underlying planar separa-
tor theorem was introduced in [14]. Following this theorem and its
extensions [15,16], our algorithm establishes a hierarchy of sepa-
rators by recursively dividing the original grid in smaller subgrids
as long as the number of grid points does not fall below a threshold.
After computing all optimal colorings for the smallest subgrids by
an exhaustive search, the colorings of the subgrids are combined
level by level to get a minimal coloring for the original grid. Our
algorithm is implemented in C++ and is parallelized by OpenMP,
suitable for recent shared-memory computers. Parts of this article
have already been published in a preliminary version in [17,18].

This article is structured as follows. In Section 2, we explain
stencil-based Jacobian computations and introduce corresponding
matrix- and grid-based representations. Additionally, we briefly
explain the technique to exploit the sparsity of Jacobian matrices. In
Section 3, the grid coloring problem and the vertex separators are
introduced. We describe the sub-exponential coloring algorithm

using separators in Section 4 and the implementation details and
techniques to reduce the runtime in Section 5. In Section 6, we
compare the runtime of our algorithm to the runtime of the exhaus-
tive search coloring algorithm. Furthermore, the difference in the
number of colors and the runtime of a greedy coloring heuristic is
evaluated. In the last section we give a concluding summary.

2. Stencil-based Jacobian computations on grids

We are looking for the Jacobian matrix of a function f defined by
some computer program. We focus on the special case where this
function

f : R
MN −→ R

MN (1)

is computed by a stencil operation on a regular Cartesian M × N grid.
That is, the value of a quantity on a grid point is updated by the
weighted values of the quantity on neighboring grid points. Here,
we consider only neighbors in space rather than in time. The deriva-
tive of the vector-valued function f with respect to some vector
x ∈ R

MN into the direction of a vector s ∈ R
MN is defined by

∂f
∂x
s = lim

h→0

f (x + hs) − f (x)
h

.

The Jacobian matrix of f is an MN × MN matrix, which would
require MN + 1 evaluations of f and is therefore very time-
consuming. However, for any MN × p matrix S, the product of
the Jacobian and S can be evaluated by p + 1 evaluations of the
function f using divided differencing. Similarly, the forward mode
of automatic differentiation [19,20] is capable of computing that
matrix–matrix product without truncation error. A good effort esti-
mation is still p + 1 times the time needed to evaluate f.

Two columns of the Jacobian are structurally orthogonal if they
do not have any nonzero element in the same row. In the example
given in Fig. 1(b), the columns 1 and 6 are structurally orthogonal
since there is no row in which both columns have a nonzero ele-
ment. The idea to reduce the computational effort to compute all
nonzero entries of a sparse Jacobian consists of partitioning the
columns of the Jacobian into groups of structurally orthogonal
columns [11]. Therefore, the vector s can be chosen as binary vec-
tor containing ones precisely at the indices corresponding to the
columns of such a group. The multiplication of the Jacobian matrix
with this vector will then give us the nonzero elements of all these
pairwise structurally orthogonal columns simultaneously. This per-
mits us to construct a binary MN × p matrix S with p ≤ MN such that
the product J · S will give us all nonzero elements of the Jacobian,
by finding p groups of structurally orthogonal columns. Therefore,
we can calculate the entire Jacobian using only p + 1 evaluations of
function f.

Fig. 1. (a) Five-point stencil N5pt(m, n). (b) Nonzero pattern of the Jacobian matrix resulting from N5pt using a natural ordering of grid points on a 3 × 3 grid. Background
padding indicates p = 5 groups of structurally orthogonal columns. (c) Sequence of covers obtained from using p = 5 covers each corresponding to a group of structurally
orthogonal center points for N5pt on a 9 × 7 grid.

Download English Version:

https://daneshyari.com/en/article/10332453

Download Persian Version:

https://daneshyari.com/article/10332453

Daneshyari.com

https://daneshyari.com/en/article/10332453
https://daneshyari.com/article/10332453
https://daneshyari.com

