
Journal of Computational Science 5 (2014) 51–62

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Flexible composition and execution of large scale applications on
distributed e-infrastructures

Stefan J. Zasada, David C.W. Chang1, Ali N. Haidar2, Peter V. Coveney ∗

Centre for Computational Science, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom

a r t i c l e i n f o

Article history:
Received 18 February 2013
Received in revised form 9 September 2013
Accepted 24 October 2013
Available online 1 November 2013

Keywords:
E-infrastructure
High performance computing
Application virtualization
Usability

a b s t r a c t

Computer simulation is finding a role in an increasing number of scientific disciplines, concomitant with
the rise in available computing power. Marshalling this power facilitates new, more effective and different
research than has been hitherto possible. Realizing this inevitably requires access to computational power
beyond the desktop, making use of clusters, supercomputers, data repositories, networks and distributed
aggregations of these resources. The use of diverse e-infrastructure brings with it the ability to perform
distributed multiscale simulations. Accessing one such resource entails a number of usability and security
problems; when multiple geographically distributed resources are involved, the difficulty is compounded.
In this paper we present a solution, the Application Hosting Environment,3 which provides a Software as a
Service layer on top of distributed e-infrastructure resources. We describe the performance and usability
enhancements present in AHE version 3, and show how these have led to a high performance, easy to
use gateway for computational scientists working in diverse application domains, from computational
physics and chemistry, materials science to biology and biomedicine.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Today’s computational scientists face a growing number of chal-
lenges which affect their ability to fully exploit the computational
resources, made available to them via so called e-infrastructures
(such as PRACE, EGI or EUDAT in Europe, or XSEDE in the USA).
Firstly, they have an unprecedented amount of computational
power available to them, which will continue to grow inexorably in
the future, presenting many opportunities as well as challenges to
an increasing number of scientific disciplines that rely on computer
based modelling and simulation.

Secondly, the architectures of these large scale high perfor-
mance computing (HPC) machines point to a growing trend of
computers comprised of hybrids of scalar and vector processors
[1,2]. This requires application scientists to ensure their code is
optimized to take full advantage of the hybrid architecture of a
specific machine. Grid computing [3,4] has sought to simplify end
user access to and use of HPC resources, but the middleware tools
developed to realize the computational grid concept have seldom

∗ Corresponding author.
E-mail address: p.v.coveney@ucl.ac.uk (P.V. Coveney).

1 Now at: The Graduate School of Biomedical Engineering, University of New
South Wales, Sydney, Australia.

2 Now at: HSBC, Canada Square, London, UK.
3 AHE is available to download under the LGPL license from: https://sourceforge.

net/projects/ahe3/.

provided the transparency and ease of use envisaged [5]. The
challenges described above are compounded when one attempts
to invoke multiple resources, in order to achieve more than just
the sum of their individual parts [6].

Alongside grid computing we have witnessed the development
of cloud computing. Cloud computing represents a fast growing
business model that seeks to commoditize computational infra-
structure, and provide access to various distributed resources such
as CPU, memory and storage (known as infrastructure services)
and applications (software as services). It is a rapidly growing area
due to major strategic investments from global software companies
such as Microsoft, Amazon, Google and IBM. Cloud storage today is
growing in popularity, particularly due to its shared data at low cost
capabilities. Nonetheless, there are many security and legal issues
in cloud computing that are yet to be resolved.

The Application Hosting Environment [7,8] is a middleware
layer designed to simplify the user’s ability to exploit computa-
tional resources beyond the desktop, greatly facilitating the use of
e-infrastructure. It has been deployed in support of a diverse set
of projects, including HIV-1 protease modelling [9], immune sys-
tem simulation [6], and large scale materials modelling [10]. AHE
seeks to converge the Software as a Service model of cloud com-
puting with high performance grid computing. In this paper we will
discuss the concepts behind AHE, and describe in detail the latest
version of the Application Hosting Environment, AHE 3.0, which has
been reimplemented using RESTful services [11] rather than WSRF
services [12]. We will demonstrate how the work we have done to
redesign AHE 3.0 has led to a significant increase in performance

1877-7503/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2013.10.009

dx.doi.org/10.1016/j.jocs.2013.10.009
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jocs.2013.10.009&domain=pdf
mailto:p.v.coveney@ucl.ac.uk
https://sourceforge.net/projects/ahe3/
https://sourceforge.net/projects/ahe3/
dx.doi.org/10.1016/j.jocs.2013.10.009

52 S.J. Zasada et al. / Journal of Computational Science 5 (2014) 51–62

compared to AHE 2.0 [8], and we show how this new version of
AHE is benefiting various ongoing research projects.

2. Service oriented computational science

Virtualization is a broad term used in computer science to
describe the abstraction of resources. Application virtualization
describes a range of technologies designed to separate an appli-
cation from the operating system that it runs on. In many cases
this is achieved by introducing compatibility layers around under-
lying operating system features and libraries, for example the WINE
system used to run Windows applications on UNIX systems [13].

The key aim of virtualization is to abstract away all the details
of an underlying hardware or software system from the concern of
the user. The benefits are manifold: developers can code to a single
virtualized interface or system rather than for a specific hardware
implementation; multiple virtual instances of a system can often
be run side by side on a single physical system (in machine virtu-
alization for example); and physical resources can be protected.

The growth of virtualization technologies, along with service
oriented architectures (SOA), has also driven the development of
cloud computing. The use of virtualized interfaces and systems
means that the specific details of a cloud’s architecture are hidden
from consumers of the cloud resources. Several cloud computing
models exist; the Infrastructure as a Service (IaaS) cloud paradigm
typically takes the form of virtualized servers running on hardware
platforms managed by the cloud hosting company, where each user
is given access to one or more virtual servers, solely under their con-
trol. This also provides a degree of elasticity, as the number of virtual
machines in a cloud environment can be greater than the number
of physical servers available to the hosting entities. The Software
as a Service (SaaS) cloud paradigm delivers access to applications
centrally hosted on a cloud platform, typically via a web browser.

While virtualization technologies certainly reduce the com-
plexity of using a system, and especially when working across
multiple heterogeneous computing environments, they are not
widely deployed in high performance computing scenarios. As its
name suggest, HPC seeks to obtain maximum performance from
computing platforms. Extra software layers impact detrimentally
on performance, meaning that in HPC scenarios users typically run
the applications as close to the ‘bare metal’ as possible. In addition
to the performance degradation introduced by virtualization tech-
nologies, choosing what details to abstract in a virtualized interface
is itself very important. Grid and cloud computing support different
interaction models. In grid computing, the user interacts with an
individual resource (or sometimes a broker) in order to launch jobs
into a queuing system. In cloud computing, users interact with a vir-
tual server, in effect putting them in control of their own complete
operating system. Both of these interaction models put the onus on
the user to understand very specific details of the system that they
are dealing with, making life difficult for the end user, typically a
scientist who wants to progress his or her scientific investigations
without any specific usability hurdles obstructing the pathway.

To address these problems, we have developed a software
layer designed to implement the Software as a Service cloud
paradigm for scientific applications that rely on high performance
computing, mediated by the Application Interaction Model which
we describe in Section 3, derived from the user requirements also
discussed in Section 3. This model is based on the insight that many
e-infrastructures impose a steep learning curve on the majority
of end users, who do not possess the technical expertise for the
most part to compile, optimize, install, debug and finally launch
their applications; they simply want to run their applications,
obtain results and focus on their scientific endeavours. While an
application may consist of a single execution of a computational
code, it could also consist of a complex set of operations involving

multiple codes, connected as a workflow; AHE enables all kinds of
applications to be treated as simple “atomic” units, helping realize
the original vision of a grid as “distributed computing performed
transparently across multiple administrative domains” [14].

3. User requirements

For supercomputer class applications, the user generally has to
install his/her own application, if that application is not one of
the few community codes pre-installed on the machine; it is not
possible simply to stage an executable to the target resource as
it requires too much bespoke tailoring to the particular hardware
setup of the resource. Generally a group of researchers will want
to use the same application on a resource. However, many users
will not know where a particular application is installed on a tar-
get system, nor will they necessarily know the best way to run the
application on a particular system. Often, with supercomputer class
systems, applications have to be run in specific ways to achieve the
best performance. The community’s expert users must spend time
educating other users on the vagaries of different queuing systems
and machines. Typically, the end user will need to stage data to the
supercomputer before he/she is able to execute her application.
Therefore, the supercomputer must provide accessible interfaces
over which data can be staged. In order to launch an application,
the users have to prepare a description of the job that they want
to run, which is submitted to the queue management system on
their target resource, in a format that the queue management sys-
tem understands and which is potentially incompatible with other
instances of the same queue management system running on other
resources. Once the job has been submitted, users monitor the
progress of their jobs through the queuing system, using interfaces
provided by the resources.

Distributed applications can consist of multiple computational
codes launched on multiple resources, connected together as work-
flows of operations, as well as single codes launched on single
resources. Applications can get their data from multiple sources,
such as online data repositories and databases, and store their
output data in similar resources. Typically, users will be given allo-
cations of time on individual grid resources, or the e-infrastructure
as a whole, through awards made to their project’s principal investi-
gator. These allocations will have a notional associated cost, the cost
per CPU hour, derived by the resource operator from their running
costs and a projected resource utilization. Such allocation models
inhibit the most creative use of and ways of exploiting distributed
e-infrastructure.

The scientific end user’s primary concern is running their appli-
cation in a timely fashion, in order to obtain results that further
their scientific objectives. All the services and facilities provided by
a grid should be subservient to this end. Typically, the user does not
even care which machine on the grid their application is run on, as
long as results are delivered within a time frame that makes them
useful, whether that is the time to publish a scientific paper, or the
time to conduct a potentially life-saving medical simulation [15].

A further problem faced by end-users and administrators of
computational e-infrastructures arises in connection with the
usability of the security mechanisms usually deployed in these
environments, in particular identity management. Many of the
existing computational grid environments use Public Key Infra-
structure (PKI) and X.509 digital certificates as a cornerstone for
their security architecture. However, it is well documented that
security solutions based on PKI lack user friendliness for both
administrators and end-users, which is essential for the uptake
of any grid security solution [16,17]. The problems stem from
the process of acquiring X.509 digital certificates, which can be
a lengthy one, and generating proxy certificates to get access to
remote resources as part of the authentication process [17]. As a

Download English Version:

https://daneshyari.com/en/article/10332457

Download Persian Version:

https://daneshyari.com/article/10332457

Daneshyari.com

https://daneshyari.com/en/article/10332457
https://daneshyari.com/article/10332457
https://daneshyari.com

