
Journal of Computer and System Sciences 82 (2016) 627–653

Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

On list update with locality of reference ✩

Susanne Albers a,∗,1, Sonja Lauer b

a Department of Computer Science, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
b Department of Computer Science, University of Freiburg, Georges Köhler Allee 79, 79110 Freiburg, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 July 2012
Accepted 30 January 2015
Available online 13 January 2016

Keywords:
Data structures
Self-organizing lists
Online algorithms
Competitive analysis
Locality of reference

We present a comprehensive study of the list update problem with locality of reference. 
More specifically, we present a combined theoretical and experimental study in which the 
theoretically proven and experimentally observed performance guarantees of algorithms 
match or nearly match. Firstly, we introduce a new model of locality of reference that 
closely captures the concept of runs. Using this model we develop refined theoretical 
analyses of popular list update algorithms. Secondly, we present an extensive experimental 
study in which we have tested the algorithms on traces from benchmark libraries. The 
theoretical and experimental bounds differ by just a few percent. Our new theoretical 
bounds are substantially lower than those provided by standard competitive analysis. It 
shows that the well-known Move-To-Front strategy exhibits the best performance. Its 
refined competitive ratio tends to 1 as the degree of locality increases. This confirms that 
Move-To-Front is the method of choice in practice.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The list update problem is one of the most extensively studied online problems, with a tremendous body of literature 
published over the past 40 years. The problem has been investigated with respect to both average-case and worst-case 
competitive analysis. We refer the reader to [1,4–6,11,17,26,29,31,34–36,39] for a selection of some key results.

The list update problem consists in maintaining a set of items as an unsorted linear list. More specifically, a linear linked 
list of items is given. A list update algorithm is presented with a sequence of requests that must be served in their order 
of occurrence. Each request specifies an item in the list. In order to serve a request, a list update algorithm must access the 
requested item, i.e. it has to start at the front of the list and search linearly through the items until the desired item is 
found. Accessing the i-th item in the list incurs a cost of i. Immediately after an access, the requested item may be moved 
at no extra cost to any position closer to the front of the list. These exchanges are called free exchanges. All other exchanges 
of two consecutive items in the list cost 1 and are called paid exchanges. The goal is to serve the request sequence so that 
the total cost is as small as possible. We emphasize that this is the standard cost model, see also [36]. Of particular interest 
are online algorithms that serve each request without knowledge of any future requests.

While early work on the list update problem evaluated online algorithms assuming that requests are generated according 
to probability distributions, research over the past 20 years has focused on competitive analysis [36]. Here an online algorithm 
is compared to an optimal offline algorithm. Given a request sequence σ , let A(σ ) denote the cost incurred by online 

✩ An extended abstract of this paper appeared in Proc. 35th International Colloquium on Automata, Languages and Programming (ICALP), 2008.

* Corresponding author.
E-mail addresses: albers@in.tum.de (S. Albers), sonja.lauer@informatik.uni-freiburg.de (S. Lauer).

1 Work supported by the German Research Foundation, grant AL 464/7-1.

http://dx.doi.org/10.1016/j.jcss.2015.11.005
0022-0000/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jcss.2015.11.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:albers@in.tum.de
mailto:sonja.lauer@informatik.uni-freiburg.de
http://dx.doi.org/10.1016/j.jcss.2015.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2015.11.005&domain=pdf


628 S. Albers, S. Lauer / Journal of Computer and System Sciences 82 (2016) 627–653

algorithm A in serving σ , and let OPT(σ ) denote the optimum offline cost. Algorithm A is called c-competitive if there 
exists a constant α such that A(σ ) ≤ c · OPT(σ ) + α holds for all σ and all size lists.

In 1985 Sleator and Tarjan proved that the Move-To-Front algorithm is 2-competitive [36]. This elegant strategy simply 
moves an item to the front of the list whenever it is requested. Since then, algorithms with an improved competitiveness 
have been developed. While the competitive ratios are of course constant, there is a substantial gap between the theoretical 
bounds and the performance ratios of the algorithms observed in practice. Moreover, Move-To-Front often outperforms other 
strategies, see e.g. [10,11]. The reason is that competitive analysis considers arbitrary request sequences, whereas sequences 
arising in practice have a special structure: They exhibit locality of reference, meaning that at any point in time only a small 
set of items is referenced.

There has been considerable research interest in studying the paging problem with locality of reference [3,7,13,19,24,
25,30,32] because, in paging, the gap between the theoretical and experimental performance values is even super-constant. 
However, hardly any work has been presented for the classical list update problem. In fact, references [10,28] point out 
that locality is an essential aspect in the list update problem and that a good model is required to properly evaluate the 
performance of algorithms.

Previous results: We focus on the results that have been developed in the framework of competitive analysis. As men-
tioned above Sleator and Tarjan [36] showed that Move-To-Front is 2-competitive. This is the best factor deterministic online 
algorithms can achieve [31]. Bachrach and El-Yaniv [9] devised deterministic MRI and PRI families of algorithms. These 
families attain competitive ratios of 2 and 3, respectively. We next turn to randomized algorithms. The first randomized 
strategy was presented by Irani [29]. Her Split algorithm is 1.9375-competitive. Reingold et al. [34] presented an elegant BIT
algorithm that is 1.75-competitive. This factor is substantially below the deterministic bound of 2. The BIT algorithm can 
be generalized to a family of Counter strategies [34]. A Timestamp family of algorithms was developed in [1]. It achieves 
a competitiveness equal to the Golden Ratio � ≈ 1.62. The best randomized algorithm currently known is COMB which is 
1.6-competitive [4]. Interestingly, COMB is a combination of BIT and a (deterministic) element of the Timestamp family. The 
factor of 1.6 is close to best lower bound of 1.50084 developed by Ambühl et al. [6] on the performance of randomized list 
update algorithms.

Experimental studies for the list update problem have been presented by Rivest [35], Bentley and McGeoch [11] and 
Bachrach et al. [10]. They analyzed popular algorithms on request sequences generated by probability distributions and 
Markov sources, on sequences derived from text and Pascal files as well as on sequences extracted from the Calgary Cor-
pus [16]. The results are not unanimous. A conclusion is that the ranking of algorithms depends on the degree of locality in 
the input.

The only prior work addressing list update with locality of reference was a paper by Angelopoulos et al. [8]. They adapted 
a locality model [3] introduced for the paging problem and proved that Move-To-Front is superior to other algorithms.

Our contribution: We present a comprehensive study of the list update problem with locality of reference. The goal is 
to provide a refined analysis of the problem in which theoretical and empirical results match or nearly match. To this end 
our study integrates theoretical and experimental work.

First, in Section 2, we introduce a new model of locality of reference that is based on the natural concept of runs. A run 
is a sequence of requests to the same item. We define a number of parameters that characterize request sequences in terms 
of the occurrence of long runs. Using these parameters we will be able to accurately estimate the performance of list update 
algorithms. We also define a model of so-called λ-locality that characterizes classes of input sequences with respect to their 
degree of locality. Loosely speaking, the more long runs there are, the higher the locality. As we shall see, our new concepts 
properly capture locality of reference in the list update problem, both from a theoretical and practical point of view.

In Section 3 we present refined theoretical analyses of list update algorithms. We concentrate on the most popular 
strategies that have received the most attention recently, namely Move-To-Front, BIT and COMB. In order to be able to 
analyze COMB, we have also evaluated a member of the Timestamp family. Of course, we have also investigated an optimal 
offline strategy. For each algorithm we have analyzed the total service cost incurred on a request sequence, where cost is 
expressed in terms of our new locality parameters. Interestingly, for Move-To-Front our cost analysis is exact, i.e. our locality 
model is powerful enough to exactly quantify Move-To-Front’s service cost on any request sequence. Furthermore, for each 
online algorithm, we have evaluated its performance relative to that of an optimal offline algorithm. Here Move-To-Front
achieves an excellent performance ratio and responds well to locality of reference: The competitiveness even tends down 
to 1 as the degree of locality increases. This does not hold true for the other online algorithms.

In Section 4, we present a comprehensive experimental study in which we have evaluated our list update algorithms 
on real-world traces from benchmark libraries. Obviously, the list update problem is a solution to the classic dictionary 
problem. In this context, in practice, requests are memory accesses. Secondly, list update has interesting applications in 
data compression, see e.g. [12,15]. For instance, the open source data compression program bzip2 relies on Move-To-Front
encoding in combination with a preceding Burrows–Wheeler transformation. Therefore, in our experiments we consider as 
input (a) memory access strings (47 traces) and (b) sequences arising in data compression routines (44 traces). In our tests 
we first analyze the traces with respect to their locality characteristics. It shows that the parameters introduced in Section 2
are indeed sensible.

Next, in the experiments, for each algorithm and each input sequence, we have computed the total service cost. Fur-
thermore, for each online algorithm and each input, we have determined the experimentally observed competitiveness, which 
is the total service cost of the algorithm divided by the total cost incurred by an optimal offline strategy. Since the offline 



Download English Version:

https://daneshyari.com/en/article/10332684

Download Persian Version:

https://daneshyari.com/article/10332684

Daneshyari.com

https://daneshyari.com/en/article/10332684
https://daneshyari.com/article/10332684
https://daneshyari.com

