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Grammar binarization is the process and result of transforming a grammar to an equivalent
form whose rules contain at most two symbols in their right-hand side. Binarization is
used, explicitly or implicity, by a wide range of parsers for context-free grammars and
other grammatical formalisms. Non-trivial grammars can be binarized in multiple ways,
but in order to optimize the parser’s computational cost, it is convenient to choose a
binarization that is as small as possible. While several authors have explored heuristics
to obtain compact binarizations, none of them guarantee that the resulting grammar has
minimum size. However, to our knowledge, no hardness results for this problem have been
published. In this article, we address this issue and prove that the problem of finding
a minimum binarization of a given context-free grammar is NP-hard, by reduction from
vertex cover. We also provide a lower bound on the approximability of this problem.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The process of grammar binarization, by which a grammar is transformed into an equivalent binary form by splitting its
larger rules into sets of binary rules, is essential to perform efficient natural language parsing with context-free grammars
(CFGs) and other grammatical formalisms.

The most widely known and discussed application of binarization is probably the preprocessing step for the CKY parsing
algorithm for CFGs [1,2], which needs to use a binary grammar in order to achieve O (n3) time complexity.1 However,
most if not all the well-known CFG parsing algorithms use binarization in one way or another: although algorithms such
as the Earley [5], Left-Corner [6], Graham–Harrison–Ruzzo [7] or Head-Corner [8] parsers do not perform it explicitly as a
preprocessing step, they binarize rules implicitly using dotted items. In fact, some of these parsers (such as the Left-Corner
[6] and Head-Corner [8] parsers) can be seen as implementations of the same underlying parser with different binarization
strategies.

Binarization is also used to achieve efficient parsing for more powerful grammatical formalisms, such as conjunctive
grammars [9], synchronous context-free grammars [10], linear context-free rewriting systems [11], coupled context-free
grammars [12] or regular tree grammars [13]. While in this article we will only deal with CFGs, the hardness result pre-
sented in this article is applicable to all these formalisms as they contain CFGs as a particular case. Note that, in the case of
synchronous CFGs and linear context-free rewriting systems with bounded fan-out, this is arguably not very useful because
these formalisms do not guarantee that a binarization of any size even exists for a given grammar [10,14]. However, it can
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1 While CKY is traditionally described for grammars in Chomsky Normal Form [3], which impose some extra conditions apart from being binary (e.g.
disallowing rules with a single nonterminal in the right-hand side), it is straightforward to define it in a more general way that can work efficiently with
any binary grammar [4].
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still be applied to subclasses of these formalisms that do guarantee this property, such as well-nested linear context-free
rewriting systems [15] or binarizable synchronous CFGs [10].

A CFG can be binarized in different ways, depending on which pairs of symbols are chosen to be grouped to form
binary rules. In particular, the number of possible binarizations for a single (n + 1)-ary CFG production rule is the nth
Catalan number, Cn = 1

n+1

(2n
n

)
[16]. This naturally raises the question of which binarization should be used to obtain the

best parsing efficiency. Since grammar size is an important factor in the efficiency of natural language parsers [17], an
obvious approach is to binarize in a way that tries to collapse pairs of nonterminal symbols that are frequent in grammar
rules, so as to obtain a binary grammar as compact as possible [18]. Song et al. [16] provide empirical evidence that using
compact grammars greatly improves the efficiency of a CKY parser with respect to naive binarization, and gain further
improvements by using corpus statistics to predict the amount of useless items (items not leading to a complete parse) that
will be generated by different binarizations.

While several authors have recently tackled the problem of searching for small binarizations for a given grammar [18,
16,19]; no efficient algorithm has been described that will solve the problem of finding the smallest size binarization for
a given CFG (the minimum binarization problem). Instead, the mentioned papers use greedy algorithms to find a reasonably
small binarization, without guarantee of optimality. An experiment by DeNero et al. [19] for transducer grammars showed
this strategy to output a grammar more than seven times smaller than naive right-branching binarization, but still more
than twice the size of the optimal grammar obtained using an integer linear programming solver (which, reportedly, could
only find optimal solutions for very small grammars).

To the best of our knowledge, in spite of the absence of an efficient algorithm to compute the optimal binarization for a
given CFG; and even though growing use of mildly context-sensitive formalisms such as synchronous context-free grammars,
linear context-free rewriting systems or range concatenation grammars has led to a surge of interest in theoretical results
about binarization in the last few years [11,10,15,20]; no hardness results are known for the minimum binarization problem.

In this article, we fill that gap in the literature by proving that the minimum binarization problem is NP-hard. We do so
by reduction from the vertex cover problem, inspired by the proof for the (related, but not equivalent) smallest grammar
problem by Charikar et al. [21]. We also provide an inapproximability result, showing that it is NP-hard to approximate the
minimum binarization problem within any factor smaller than 2575/2574.

Related work As already mentioned, the problem of finding a binarization as small as possible for a given grammar has been
considered in several recent papers in the computational linguistics literature [18,16,19]; but we know of no published
hardness results for the minimum binarization problem.

On the other hand, the related problem of finding the minimum (not necessarily binary) context-free grammar that
defines a given single-string language, which is relevant in data compression [22], is known to be NP-hard. While this
problem (called the “smallest grammar problem” [21]) is not equivalent to the minimum binarization problem, they do
have obvious similarities, and the hardness proof for the minimum binarization problem in Section 3 has been inspired by
the proof for the smallest grammar problem given by Charikar et al. [21].

In particular, the main differences between the two problems are the following:

1. The smallest grammar problem is concerned with a language with a single string (or, equivalently, it starts from a
grammar with a single rule), whereas the minimum binarization problem can have any context-free grammar as input.

2. In relation to the previous point, the smallest grammar problem is not limited to transformations that preserve the
structure of parse trees: it only requires so-called weak equivalence, i.e., that the input and output grammars generate
the same set of strings. On the other hand, as will be explained in detail in Section 2, the minimum binarization problem
requires that the output grammar be a factorization of the input grammar, i.e., a transformation of the input obtained
by splitting its rules into smaller rules. This is so that the parse trees under the original grammar can be recovered
from parses obtained with the binarized one, and the string and tree probabilities under the original grammar carry
over to the binarized one if a probabilistic model is used.

3. In the minimum binarization problem, size is minimized among binary grammars only, while in the smallest grammar
problem any context-free grammar is allowed. Note that this difference is relevant because the smallest binary CFG
for a given string or language may be different to (and larger than) the smallest unrestricted CFG for that string: for
example, we can generate the language {abc} with a non-binary grammar of size 3 (the one with a single rule S → abc,
with three symbols on its right-hand side) but the smallest binary grammars for that same language have size 4 (one
of them would have the rules S → Ac, A → ab, for a total of four symbols in their right-hand sides).

While the first two differences would not prevent us from carrying over the core of the hardness proof from the smallest
grammar problem to the minimum binarization problem, the third one does, since the proof by Charikar et al. [21] relies on
the construction of a grammar whose optimized version has non-binary rules. It is also not obvious how to attempt a proof
by reduction of the smallest grammar problem to the minimum binarization problem, since we do not know whether the
smallest binary grammar need always be a binarization of the smallest grammar, and even supposing that this proposition
holds, we would still need to find a polynomial way of finding the optimal set of pairs of nonterminals to collapse (or of
pairs of binary rules to merge into larger rules) to obtain the smallest grammar from the smallest binarization.

Thus, rather than attempting such a reduction, we will prove that the minimum binarization problem is NP-hard by
using a new proof by reduction from vertex cover, inspired on the one in [21] (which was, in turn, inspired by arguments
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