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We present the first implementation of a distributed clock generation scheme for Systems-
on-Chip that recovers from an unbounded number of arbitrary transient faults despite a
large number of arbitrary permanent faults. We devise self-stabilizing hardware building
blocks and a hybrid synchronous/asynchronous state machine enabling metastability-free
transitions of the algorithm’s states. We provide a comprehensive modeling approach that
permits to prove, given correctness of the constructed low-level building blocks, the high-
level properties of the synchronization algorithm (which have been established in a more
abstract model). We believe this approach to be of interest in its own right, since this is
the first technique permitting to mathematically verify, at manageable complexity, high-
level properties of a fault-prone system in terms of its very basic components. We evaluate
a prototype implementation, which has been designed in VHDL, using the Petrify tool in
conjunction with some extensions, and synthesized for an Altera Cyclone FPGA.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/3.0/).

1. Introduction & related work

In the past, computers have essentially been viewed as monolithic, synchronous, fault-free systems. If at all, fault-
tolerance has been introduced (i) to deal with limited, specific failures (e.g. errors in communication or data read from
storage, which are usually handled via error-correcting codes), and (ii) at the level of distributed systems comprised of mul-
tiple machines that are fault-prone or subject to attacks (e.g. data centers or peer-to-peer applications, which use some form
of replication). Except for critical systems and extreme operational conditions (e.g. medical or aerospace applications [1]),
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there has been little motivation to build systems that are robust on all levels from scratch, a process that involves
redesigning—or even reinventing—the very basics of how computations are organized and performed.

Due to the tremendous advances of Very Large Scale Integration (VLSI) technology, this situation has changed. Enabled by
ever decreasing feature sizes and supply voltages, modern circuits nowadays accommodate billions of transistors running at
GHz speeds [2]. As a consequence, the assumption of chip-global (not to speak of system-global) synchrony [3] and no (or
restricted) faults gradually became outdated [4]. Improved process technology and architectural-level fault-tolerance mea-
sures are common nowadays, and the lack of global synchrony has been tackled by accepting a certain level of asynchrony
between different parts of the system.

In the most extreme form of this approach, computations are completely unsynchronized at all levels [5], which requires
to synchronize all dependent activities (like sending and receiving of data) explicitly via handshaking. In contrast, Globally
Asynchronous Locally Synchronous (GALS) systems [6] make use of local clock sources to drive synchronous computations
within each clock domain. Note that, in the wider sense, most multiprocessors fall into this category, as there is usually
no single common clock that drives all processors. GALS systems again can be divided into two general classes: One that
operates asynchronously at the inter-domain level, and the other consisting of multi-synchronous systems [7,8] that provide
some, albeit reduced, degree of synchronization among clock domains. The former class suffers from the drawback that, for
inter-domain communication, either strong synchronizers or stoppable clocks must be foreseen [9]. After all, every bit of the
sender’s data must have stabilized at the receiver before the clock edge used for reading the data occurs. This is avoided in
multi-synchronous systems, where high-speed inter-domain communication via FIFO buffers can be implemented due to the
available global synchronization [10]. Since the latter abstraction is also very useful for other purposes, multi-synchronous
GALS is preferable from the viewpoint of a system-level designer.

Naturally, establishing inter-domain synchronization comes at additional costs. While it is not too difficult to achieve and
maintain in the absence of faults [11,12], the issue becomes highly challenging once faults of clocking system components
enter the picture.

1.1. Contribution

We present an FPGA prototype implementation of a distributed clock generation scheme for SoC that self-stabilizes in
the presence of up to f < n/3 faulty nodes. It incorporates the pulse algorithm from [13] that tolerates arbitrary clock drifts
and allows for deterministic recovery and (re)joining in constant time if n − f nodes are synchronized; it stabilizes within
time O(n) with probability 1 − 2−n from any arbitrary state. An additional algorithmic layer that interacts weakly with
the former provides bounded high-frequency clocks atop of it. Nodes executing the compound algorithm broadcast a mere
constant number of bits in constant time. The formal proofs of the properties of the pulse synchronization algorithm and
the derived high-frequency clocks are given in [13].

Deriving an implementation from the specification of the algorithm in [13] proved to be challenging, as the high-level
theoretical model and formulation of the algorithm in [13] abstracts away many details. Firstly, it assumes a number of basic
self-stabilizing modules above the level of gates and wires to be given. We devise and discuss self-stabilizing implemen-
tations of these building blocks meeting the specifications required by the high-level algorithm. Secondly, the algorithm’s
description is in terms of state machines performing transitions that are non-trivial in the sense that they do not consist
of switching a single binary signal or memory bit. This requires careful consideration of metastability issues, since these
state transitions are triggered by information from different clock domains. In order to resolve this issue, we introduce a
generic Hybrid State Transition Machine (HSTM) that asynchronously starts a local synchronous execution of a state transition
satisfying the model specification from [13]. Related to this matter, we thirdly discuss in detail how the algorithm and
its implementation make a best effort to guard against metastable upsets. Here, we try to get the best out of the design
decisions and rely on synchronizers only where absolutely necessary.

These non-trivial implementation issues and the complex interactions between the basic building blocks raise the ques-
tion under which circumstances the high-level properties of the algorithm shown in [13] indeed hold for the presented
implementation. To answer this question, we devised a model that is able to capture the behavior of the constructed mod-
ules, including faults, resilience to faults, and self-stabilization, in a hierarchical fashion. By specifying the desired behavior
of modules in terms of the feasible output generated in response to their inputs, we can also reason about the behavior
of (implementations of) modules in a hierarchical manner. This property is crucial, as it permits to determine conditions
under which our implementation indeed satisfies the requirements by the abstract model used in [13], and then soundly
conclude that if these conditions are met, all statements made in [13] apply to our implementation. Since our approach is
highly generic and permits to adjust the granularity of the description in order to focus on specific aspects of the system,
we believe it to be of general and independent interest in the context of devising fault-tolerant systems.

In order to verify the predictions from theory,3 we carried out several experiments incorporating drifting clocks, varying
delays, and both transient and permanent faults. This necessitated the development of a testbed that can be efficiently
controlled and set up for executing a large number of test runs quickly. In our 8-node prototype implementation, the

3 Or, to be scientifically accurate, we rather successfully failed at falsifying them. Our implementation primarily serves as a proof of concept, as clearly
an FPGA implementation can merely hint at the properties of an ASIC.
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