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a  b  s  t  r  a  c  t

In  this  paper,  we  investigate  the  pest  control  model  with  population  dispersal  in  two  patches  and
impulsive  effect.  By  exploiting  the  Floquet  theory  of  impulsive  differential  equation  and  small  ampli-
tude  perturbation  skills,  we can  obtain  that  the susceptible  pest  eradication  periodic  solution  is  globally
asymptotically  stable  if  the  impulsive  periodic  � is  less  than the critical  value  �0 . Further,  we also  prove
that  the  system  is  permanent  when  the  impulsive  periodic  �  is larger  than  the critical  value  �0. Hence,  in
order  to  drive  the  susceptible  pest  to extinction,  we  can  take  impulsive  control  strategy  such  that  �  <  �0

according  to  the  effect  of the  viruses  on the  environment  and  the  cost  of the  releasing  pest  infected  in
a  laboratory.  Finally,  numerical  simulations  validate  the  obtained  theoretical  results  for  the  pest  control
model  with  population  dispersal  in  two  patches  and  impulsive  effect.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

It is well known that the traditional method for the pest con-
trol depends on the seasonal use of chemical pesticides, while it
has been found that the unrestrained use of persistent pesticide
not only can increase the incidence of pesticide-resistant pest vari-
eties, but also can inflict harmful effects on humans through the
accumulation of hazardous chemicals in their food chain [1–4].
Moreover, pesticide pollution is also a major threat to beneficial
insects, and these insects are sometimes more affected by pesticide
spraying than target pests. In fact, the use of chemical pesticides
will generate many deleterious effects, which need to be reduced
or eliminated. Besides, the effectiveness of chemical pesticides
decreases, which occurs to the adaptation of the pests to such pes-
ticides, and it also leads to an exponential increase in the cost of
spraying chemicals on pests [5–7]. As a result, many researchers
start placing much emphasis on tactics other than chemical con-
trols, including the deployment of crop varieties that are resistant
to pests, genetic, cultural and biological methods, more and more
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experts have the intense interest in studying biological control, and
investigate the biological and cultural methods of pest control that
are ecologically feasible and can give the answers that are sustain-
able in the long term [8–14]. Andson and May  [15,16] have studied
the dynamics of inset–pathogen interactions.

In fact, the use of biologically based technologies for pest con-
trol is a very effective method in the integrated pest management,
which is also widely payed more attention to in ecologists and
applied mathematicians. One of the important and effective bio-
logical controlling methods is by means of releasing the natural
enemies, which plays an important role in suppressing insect pests.
However, the cultivation of the natural enemy in laboratories is
very difficult, and the cost is also very high in general. Especially,
when encountering the situation of some disaster, which is limited
in a small range, the method is not very effective or ideal at this time.
Moreover, the researchers have made lots of important progress in
biological control, theoretically as well as experimentally [17–21].

Many researchers have widely studied the dynamics of pop-
ulation dispersal in multiple different patches [22–28]. Xiang
and Song [29] have studied the dynamic behaviors of a two-prey
two-predator system with impulsive effect on the predator of
fixed moment. Some researchers have controlled the pests by
using viruses and simultaneously releasing the pest population
[30,31]. First, a small amount of pathogens is introduced into
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a pest population with the expectation that it will generate an
epidemic and that it will subsequently be endemic. The success
of this approach depends on the survival of the microbes which
in turn depends on environmental factors. At the same time, we
consider to release the pests infected in the laboratories to the pest
population with periodic impulsive effect. The infected pest has
little effect on the crops. The susceptible pests become infected
through direct contact with the infective ones or through encoun-
tering with the free-living infective stage in the environment. Thus
it can infect the pest population and result in the death of them.
The main purpose of this paper is to formulate and investigate an
epidemiological model for the bio-control of a pest. In fact, the
theoretical investigation and its application analysis can be found
in almost every field [32–40]. This pest population is assumed to
grow according to a logistic curve in the absence of disease [41,42].
In this paper, we assume that the spread of disease of the pest only
happens in two patches, and the dispersal only happens at the
impulse time, when some infected pests are introduced. Applying
the comparison theorem of impulsive differential equation, we can
obtain the sufficient conditions for global asymptotical stability of
semi-trivial periodic solution and the permanence of system.

The paper is organized as follows: In Section 2, we  establish the
pest model and introduce some definitions. In Section 3, we  give
some lemmas and theorems. We  analyze the conditions for the
globally asymptotical stability and the permanence of the semi-
trivial periodic solution. In Section 4, numerical simulations are
given to illustrate the feasibility of our results.

2. Model formulation

Let Ni(t) (i = 1, 2) denotes the density of an original insect pest
population in the ith (i = 1, 2) patch. Suppose that the style of
their growth conforms to the Logistic curve, the maximum capac-
ity of two environment are r1/a1, r2/a2, respectively. Their intrinsic
birthrate are r1, r2, respectively. Then we can obtain the dynamics of
N1(t) and N2(t) as the following differential equation, respectively,
by establishing mathematical model and considering the practical
value:

{
Ṅ1(t) = N1(t)(r1 − a1N1(t)),

Ṅ2(t) = N2(t)(r2 − a2N2(t)).

When a pest pathogen as biotic insecticide intrudes into the
pest community, the pest species is divided into two  classes: The
first class is the susceptible pest whose density are represented by
Si(t)(i = 1, 2) at the time t in the ith (i = 1, 2) patch; the second class
is the infected pest whose density is denoted by Ii(t) (i = 1, 2) at the
time t in the ith (i = 1, 2) patch. So the total density of the population
at any time t is

{
N1(t) = S1(t) + I1(t),

N2(t) = S2(t) + I2(t).

We  further assume that the pest cannot carry on the dispersal
in two different patches, and the susceptible pest individuals are
capable of reproducing. The incidence of the pest disease is bilin-
ear incidence. The incidence is given by the simple mass action
incidence with transmission coefficient �i > 0(i  = 1, 2) in the ith
(i = 1, 2) patch. The constant ˇi > 0(i  = 1, 2) in the ith (i = 1, 2) patch

act as the mortality due to the illness. Thus we can obtain the
insect–pathogen model as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṡ1(t) = (r1 − a1S1(t))S1(t) − �1S1(t)I1(t),

Ṡ2(t) = (r2 − a2S2(t))S2(t) − �2S2(t)I2(t),

İ1(t) = �1S1(t)I1(t) − ˇ1I1(t),

İ2(t) = �2S2(t)I2(t) − ˇ2I2(t).

(2.1)

If the pests have the dispersal in two patches, aii > 0 (i = 1, 2) rep-
resents the migration coefficient of the susceptible pest in the ith
(i = 1, 2) patch, and bii > 0(i  = 1, 2) represents the migration coeffi-
cient of infected pest in the ith (i = 1, 2) patch, then the model (2.1)
can be rewritten as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṡ1(t) = (r1 − a1S1(t))S1(t) − �1S1(t)I1(t) − a11S1(t) + a22S2(t),

Ṡ2(t) = (r2 − a2S2(t))S2(t) − �2S2(t)I2(t) − a22S2(t) + a11S1(t),

İ1(t) = �1S1(t)I1(t) − ˇ1I1(t) − b11I1(t) + b22I2(t),

İ2(t) = �2S2(t)I2(t) − ˇ2I2(t) − b22I2(t) + b11I1(t).
(2.2)

If the infected pest are introduced, the model (2.2) can be given
as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ṡ1(t) = (r1 − a1S1(t))S1(t) − �1S1(t)I1(t) − a11S1(t) + a22S2(t),

Ṡ2(t) = (r2 − a2S2(t))S2(t) − �2S2(t)I2(t) − a22S2(t) + a11S1(t),

İ1(t) = �1S1(t)I1(t) − ˇ1I1(t) − b11I1(t) + b22I2(t) + ˛1,

İ2(t) = �2S2(t)I2(t) − ˇ2I2(t) − b22I2(t) + b11I1(t) + ˛2,
(2.3)

where ˛i > 0 (i = 1, 2) represents the release amount of infected pests
at the ith patch.

If we introduce the pest pathogen and infected pests into the
model (2.3) at the impulsive time, and the patch dispersal only
happens between susceptible pest individuals at just the impulsive
time, thus we can obtain the following biologic control model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ1(t) = (r1 − a1S1(t))S1(t) − �1S1(t)I1(t),

Ṡ2(t) = (r2 − a2S2(t))S2(t) − �2S2(t)I2(t),

İ1(t) = �1S1(t)I1(t) − ˇ1I1(t),

İ2(t) = �2S2(t)I2(t) − ˇ2I2(t),

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t /= n�,

�S1(t) = −u1S1(t) − a11S1(t) + a22S2(t),

�S2(t) = −u2S2(t) − a22S2(t) + a11S1(t),

�I1(t) = u1S1(t) + ˛1,

�I2(t) = u2S2(t) + ˛2,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

t = n�,

(2.4)

where

ui > 0, ai > 0, 0 < ui + aii < 1, i = 1, 2,

�Si(t) = Si(t
+) − Si(t), �Ii(t) = Ii(t

+) − Ii(t), i = 1, 2,

ui denotes the probability that the pest is infected due to the pest
pathogen at t = n� in the ith patch, where � represents the impulsive
cycle.



Download English Version:

https://daneshyari.com/en/article/10332817

Download Persian Version:

https://daneshyari.com/article/10332817

Daneshyari.com

https://daneshyari.com/en/article/10332817
https://daneshyari.com/article/10332817
https://daneshyari.com

