
Please cite this article in press as: J. Borgdorff, et al., Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library
and Environment, J. Comput. Sci. (2014), http://dx.doi.org/10.1016/j.jocs.2014.04.004

ARTICLE IN PRESSG Model
JOCS-274; No. of Pages 13

Journal of Computational Science xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Distributed multiscale computing with MUSCLE 2, the Multiscale
Coupling Library and Environment

J. Borgdorff a,∗, M. Mamonskib,1, B. Bosakb, K. Kurowskib, M. Ben Belgacemc, B. Chopardc,
D. Groend, P.V. Coveneyd, A.G. Hoekstraa,e

a Computational Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
b Poznań Supercomputing and Networking Center, Poznań, Poland
c Computer Science Centre, University of Geneva, Carouge, Switzerland
d Centre for Computational Science, University College London, London, United Kingdom
e National Research University ITMO, Saint-Petersburg, Russia

a r t i c l e i n f o

Article history:
Received 4 November 2013
Received in revised form 24 March 2014
Accepted 8 April 2014
Available online xxx

Keywords:
Distributed multiscale computing
Multiscale modelling
Model coupling
Execution environment
MUSCLE

a b s t r a c t

We present the Multiscale Coupling Library and Environment: MUSCLE 2. This multiscale component-
based execution environment has a simple to use Java, C++, C, Python and Fortran API, compatible with
MPI, OpenMP and threading codes. We demonstrate its local and distributed computing capabilities and
compare its performance to MUSCLE 1, file copy, MPI, MPWide, and GridFTP. The local throughput of MPI
is about two times higher, so very tightly coupled code should use MPI as a single submodel of MUSCLE 2;
the distributed performance of GridFTP is lower, especially for small messages. We test the performance
of a canal system model with MUSCLE 2, where it introduces an overhead as small as 5% compared to
MPI.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Multiscale modelling and simulation is of growing interest [21],
with appeal to scientists in many fields such as computational
biomedicine [33], biology [34], systems biology [14], physics [15],
chemistry [27] and earth sciences [3]. Meanwhile, there are efforts
to provide a more general way of describing multiscale mod-
els [26,38,7], including our Multiscale Modelling and Simulation
Framework [13,23,24,8]. This framework describes the process of
constructing a multiscale model by identifying and separating its
scales, defining a multiscale model as a set of coupled single scale
models. It then provides a computational modelling language and
environment to create and deploy such models on a range of

∗ Corresponding author. Tel.: +31 20 525 7446.
E-mail addresses: J.Borgdorff@uva.nl, joris@jorisborgdorff.nl (J. Borgdorff),

bbosak@man.poznan.pl (B. Bosak), krzysztof.kurowski@man.poznan.pl
(K. Kurowski), mohamed.benbelgacem@unige.ch (M. Ben Belgacem),
bastien.chopard@unige.ch (B. Chopard), d.groen@ucl.ac.uk (D. Groen),
p.v.coveney@ucl.ac.uk (P.V. Coveney), A.G.Hoekstra@uva.nl (A.G. Hoekstra).

1 Mariusz Mamonski (1984–2013) suddenly deceased after the first submission
of this article. He had a major role in the development, deployment, tests, support,
and software compatibility of MUSCLE 2.

computing infrastructures. For an example of biomedical applica-
tions in this context, see [19].

In this paper we present a means to implement multiscale
models as described in this theoretical framework: The Multi-
scale Coupling Library and Environment 2 (MUSCLE 2). It takes
a component-based approach to multiscale modelling, promot-
ing modularity in its design. In essence, it treats single scale
models as a separate components and facilitates their coupling,
whether they are executed at one location or multiple. It is open
source software under the LGPL version 3 license and is available
at http://apps.man.poznan.pl/trac/muscle. MUSCLE 1 [22] gener-
ally had the same architecture and it was based on the Complex
Automata theory [23,24] and focussed on multi-agent multiscale
computing. The differences between MUSCLE 1 and 2 are discussed
in Appendix A.3, and amount to sharing only 4% of their code. The
main goal of creating a successor to MUSCLE 1 was to support sim-
ulations on high performance computing infrastructures.

Distributed computing is a way to take advantage of limited and
heterogeneous resources in combination with heterogeneous mul-
tiscale models. There are several motivations for distributing the
computation of a multiscale model: to make use of more resources
than available on one site; making use of heterogenous resources
such as clusters with GPGPUs, fast I/O, highly interconnected CPU’s,
or fast cores; or making use of a local software license on one

http://dx.doi.org/10.1016/j.jocs.2014.04.004
1877-7503/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

dx.doi.org/10.1016/j.jocs.2014.04.004
dx.doi.org/10.1016/j.jocs.2014.04.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://creativecommons.org/licenses/by/3.0/
mailto:J.Borgdorff@uva.nl
mailto:joris@jorisborgdorff.nl
mailto:bbosak@man.poznan.pl
mailto:krzysztof.kurowski@man.poznan.pl
mailto:mohamed.benbelgacem@unige.ch
mailto:bastien.chopard@unige.ch
mailto:d.groen@ucl.ac.uk
mailto:p.v.coveney@ucl.ac.uk
mailto:A.G.Hoekstra@uva.nl
http://apps.man.poznan.pl/trac/muscle
dx.doi.org/10.1016/j.jocs.2014.04.004
http://creativecommons.org/licenses/by/3.0/

Please cite this article in press as: J. Borgdorff, et al., Distributed multiscale computing with MUSCLE 2, the Multiscale Coupling Library
and Environment, J. Comput. Sci. (2014), http://dx.doi.org/10.1016/j.jocs.2014.04.004

ARTICLE IN PRESSG Model
JOCS-274; No. of Pages 13

2 J. Borgdorff et al. / Journal of Computational Science xxx (2014) xxx–xxx

machine and running a highly parallel code on a high-performance
cluster. Projects such as EGI and PRACE make distributed infrastruc-
ture available, and software that uses it is then usually managed by
a middleware layer to manage distributed computing for users [39].

Quite a few open and generic component-based computing
frameworks already exist, for instance the CCA [2] with CCaffeine
[1], the Model Coupling Toolkit (MCT) [28,29], Pyre [11], or Open-
PALM [12]; see the full comparison by Groen et al. [21]. The Model
Coupling Toolkit has a long track-record and uses Fortran code
with MPI as a communication layer so it potentially makes opti-
mal use of high-performance machines. OpenPALM uses TCP/IP as
a communication layer and it is packaged with a graphical user
interface to couple models. Both frameworks provide some built-
in data transformations. MUSCLE 2 uses shared memory for models
started in the same command and TCP/IP for multiple commands.
An advantage over the other mentioned frameworks is that it pro-
vides additional support for distributed computing and for Java.
However, it has fewer built-in data transformations available and
does not provide tools for implementing the contents of single scale
models, so it should be combined with domain-specific libraries.

There are many libraries for local and wide-area communica-
tions, apart from MPI implementations and the ubiquitous TCP/IP
sockets. MPWide [20], for instance, is a lightweight library that
optimises the communication speed between different supercom-
puters or clusters; ZeroMQ [25] is an extensive communication
library for doing easy and fast message passing. To use them for
model coupling these libraries have to be called in additional glue
code. MUSCLE 2 optionally uses MPWide for wide area communi-
cation because of its speed and few dependencies.

So far MUSCLE 2 is being used in a number of multiscale mod-
els, for instance a collection of parallel Fortran codes of the Fusion
community [17], a gene regulatory network simulation [37], a
hydrology application [5], and in a multiscale model of in-stent
restenosis [10,6,19].

In this paper, we introduce the design of MUSCLE 2 in Section 2,
including the theoretical background of the Multiscale Modelling
and Simulation Framework, MUSCLE 2’s Programming Interface
(API) and runtime environment. The performance and startup
overhead of MUSCLE 2 is measured in Section 3 in a number of
benchmarks. Finally, in Section 4 two applications that use MUS-
CLE are described, principally a multiscale model of a complex canal
system, for which additional performance tests are done.

2. Design

MUSCLE 2 is a platform to execute time-driven multiscale simu-
lations. It takes advantage of the separation between the submodels
that together form the multiscale model, by treating each submodel
as a component in a component-based simulation. The submodels
individually keep track of the local simulation time, and synchro-
nise time when exchanging messages.

A strict separation of submodels is assumed in the design of
MUSCLE 2, so the implementation of a submodel does not dictate
how it should be coupled to other submodels. Rather, each sub-
model sends and receives messages with specified ports that are
coupled at a later stage. When coupling, modellers face their main
scientific challenge: to devise and implement a suitable scale bridg-
ing method to couple single scale models. MUSCLE 2 supports the
technical side of this by offering several functional components,
described in Section 2.1.

The runtime environment of MUSCLE 2 executes a coupled
multiscale model on given machines. It can run each submodel on
an independent desktop machine, local cluster, supercomputer, or
run all submodels at the same location. For instance, when one or
more submodels have high computational requirements or require
alternate resources such as GPU computing, these submodels can

be executed on a suitable machine, while the others are executed
on a smaller cluster. A requirement is that a connection can be
established between submodels, and that a message can only be
sent to currently running submodels. For some models a local
laptop, desktop or cluster will suffice; MUSCLE 2 also works well in
these scenarios. Technical details about the runtime environment
can be found in Appendix A.

MUSCLE 2 is separated into an API, which submodel code uses, a
coupling scripting environment that specifies how the submodels
will be coupled, and a runtime environment, that actually executes
the multiscale model on various machines. The library is indepen-
dent from the coupling, which is in turn independent from the
runtime environment. As a result, a submodel is implemented once
and can be coupled in a variety of ways, and then executed on any
suitable set of machines. Additionally, future enhancements to the
runtime environment are possible without changing the library.

2.1. Theoretical background

To generally couple multiscale models, a framework describ-
ing the foundations of multiscale modelling [13,8,27,26] and its
repercussions on multiscale computing [7,16] was conceived. It
starts by decomposing a phenomenon into multiple single scale
phenomena using a scale separation map as a visual aid. Based on
these single scale phenomena, single scale models are created; see
Fig. 1. Ideally, these single scale models are independent and rely
only on new messages at specific input ports, while sending mes-
sages with observations of their state at output ports. By coupling
output ports to input ports using so-called conduits, a multiscale
model is formed. Assuming a time-driven simulation approach,
each message is associated with a time point, which should be kept
consistent between single scale models.

The theoretical framework distinguishes between acyclically
and cyclically coupled models. In the former, no feedback is possi-
ble from one submodel to the other, while in the latter a submodel
may give feedback as often as needed. This distinction has many
computational implications, such as the need to keep submodels
active in cyclically coupled models, or the recurring and possi-
bly dynamic need for computing resources. MUSCLE 2 focusses
on cyclically coupled models by keeping submodels active during
the entire simulation, whereas workflow systems tend to focus on
acyclically coupled models.

Listing 1. Submodel execution loop in MUSCLE 2

To facilitate consistency, submodels each have a fixed submodel
execution loop as in Listing 1, consisting of initialisation, a loop
with first an observation and then a solving step, and then a final
observation. This loop can be restarted as long as a submodel with
a coarser time scale provides input for the initial condition. During
initialisation and solving steps, only input may be requested, and
during the observations, only output may be generated. Although
this is the general contract, submodel implementations in MUSCLE
2 may diverge from this loop, for example if it would increase
performance.

dx.doi.org/10.1016/j.jocs.2014.04.004

Download	English	Version:

https://daneshyari.com/en/article/10332821

Download	Persian	Version:

https://daneshyari.com/article/10332821

Daneshyari.com

https://daneshyari.com/en/article/10332821
https://daneshyari.com/article/10332821
https://daneshyari.com/

