
Please cite this article in press as: M. Fiers, et al., Improving the design cycle for nanophotonic components, J. Comput. Sci. (2013),
http://dx.doi.org/10.1016/j.jocs.2013.05.008

ARTICLE IN PRESSG Model
JOCS-207; No. of Pages 12

Journal of Computational Science xxx (2013) xxx–xxx

Contents lists available at SciVerse ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Improving the design cycle for nanophotonic components

Martin Fiers ∗, Emmanuel Lambert, Shibnath Pathak, Bjorn Maes, Peter Bienstman,
Wim Bogaerts, Pieter Dumon
Photonics Research Group (INTEC), Ghent University – IMEC, Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium

a r t i c l e i n f o

Article history:
Received 24 February 2011
Received in revised form 17 February 2013
Accepted 17 May 2013
Available online xxx

Keywords:
Nanophotonics
Designing and modeling optical
components
Optical circuit design
Parametrized cell
Python

a b s t r a c t

We present IPKISS, a software framework that greatly simplifies the design of nanophotonic components.
In this approach, all steps in the workflow are based on a single high-level definition of the component,
in a Python script. Because there is only one description, the design flow becomes less error prone due
to incorrect definitions, and the overall reproducibility is greatly improved.

Furthermore it enables easy closed-loop modeling of components and circuits. Also, previous work
can easily be built upon because lower level blocks can seamlessly be replaced by new blocks. While we
illustrate the application in photonics, this software and the used design patterns can be extended to
other domains such as RF design and to multidomain physics such as opto-electronics.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In a typical research or design environment, fabrication of
micro-and nanoscale devices is an expensive process with long
turnaround times. Prior to submitting a design for fabrication, these
devices are typically modeled and simulated in software. For exam-
ple, in the field of nanophotonics, electromagnetic simulations are
used to calculate how light propagates through such a device. Often
it is also required to perform tolerance analysis on the design
parameters as well as on effects of the fabrication process. One
major difficulty that arises when designing these devices is that the
different simulation tools have their own user interface and more-
over have their own representation to define components. Defining
these devices in different tools is a laborious job, and there is a con-
siderable risk of introducing errors in the specification of the device
in each tool.

The main characteristic of our approach is that a component is
defined only once on a high level [1]. This component is available as
a parametrized cell (PCell), a concept originating from the design
of electronic circuits. Then, the necessary representations (e.g. a
discretized matrix representing the component, a cross-section,
a list of polygons, port positions) to drive the different tools

∗ Corresponding author. Tel.: +32 92643272.
E-mail addresses: martin.fiers@intec.ugent.be, mfiers@gmail.com (M. Fiers),

emmanuel.lambert@intec.ugent.be (E. Lambert), shibnath.pathak@intec.ugent.be
(S. Pathak), bjorn.maes@umons.ac.be (B. Maes), peter.bienstman@intec.ugent.be
(P. Bienstman), wim.bogaerts@intec.ugent.be (W. Bogaerts),
pieter.dumon@intec.ugent.be (P. Dumon).

(simulation, visualization, routing) are extracted from this defi-
nition. The transition to different simulation tools should only be
written once in a generic way, which makes simulations much less
error prone. It is also much easier to reproduce earlier results and
to change sub-parts of the design. In this way, many variations
can easily be compared to one another (e.g. a different simulation
method, an improved component, or a modified design).

Python is our programming language of choice. The main rea-
son for using this programming language is the flexibility which it
offers: it can be used to make very complex software designs, yet
it has a relatively low threshold for researchers without extensive
programming skills. Our software toolset revolves around a cen-
tral design framework called IPKISS [1], which can interface with
different in-house and third-party simulation tools.

The paper is structured as follows: as the reader might not
be familiar with photonics, we very briefly describe this specific
research field in Section 2. In Section 3, we illustrate a typical work-
flow, i.e. the steps needed to design a nanophotonic component. We
show which design problems typically arise and demonstrate how
the software framework improves this flow. In Section 4, the tech-
nical design and implementation of the framework is described,
and in the fifth section we illustrate how we use the software to
efficiently design a complex optical component: An Arrayed Wave-
guide Grating. We conclude by providing license information. As
previously noted, it is easy to extend this architecture beyond the
horizon of photonics: electronic design, multidomain physics and
so on. Throughout the paper, we use Python code to explain sev-
eral core concepts. The code aims to be descriptive rather than to
explain all details.

1877-7503/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2013.05.008

dx.doi.org/10.1016/j.jocs.2013.05.008
dx.doi.org/10.1016/j.jocs.2013.05.008
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:martin.fiers@intec.ugent.be
mailto:mfiers@gmail.com
mailto:emmanuel.lambert@intec.ugent.be
mailto:shibnath.pathak@intec.ugent.be
mailto:bjorn.maes@umons.ac.be
mailto:peter.bienstman@intec.ugent.be
mailto:wim.bogaerts@intec.ugent.be
mailto:pieter.dumon@intec.ugent.be
dx.doi.org/10.1016/j.jocs.2013.05.008

Please cite this article in press as: M. Fiers, et al., Improving the design cycle for nanophotonic components, J. Comput. Sci. (2013),
http://dx.doi.org/10.1016/j.jocs.2013.05.008

ARTICLE IN PRESSG Model
JOCS-207; No. of Pages 12

2 M. Fiers et al. / Journal of Computational Science xxx (2013) xxx–xxx

Fig. 1. Some examples of nanophotonic subcomponents, used for designing small integrated optical circuits. Because a nanophotonic circuit is planar, crossings (left) are
sometimes needed. Tapers (right) are used to spread light from a narrow waveguide to a broad one. On the bottom, Scanning Electron Microscope (SEM) pictures of the
fabricated devices are shown.

2. Photonics

Photonics is the field of manipulating, generating and detec-
ting light (photons) by means of optical components. This is in
contrast to electronics, in which electrons are the information
carriers. Some examples of photonic devices are: lasers, optical
receivers and transmitters, CD/DVD drives and LED lighting. A
recent trend in photonics is the drive towards miniaturization
of components, and integrating many of them on a single chip.
These so-called (nano)photonic integrated circuits have a better
performance, are more robust, and consume less power than bulk
photonics, low-contrast integrated photonics and electronics. One
excellent material for making such optical chips is silicon. Sili-
con has very low absorption losses in the wavelength range that
is used for fibre-optic communications (1300 nm and 1550 nm).
Fortunately, silicon is already widely used in electronic chip fab-
rication, so we can reuse standard Complementary Metal Oxide
Semiconductor (CMOS) technology to manufacture photonic chips.
In this technology, the silicon on insulator (SOI) wafer is patterned
using deep UV lithography [2]. This opens the door to wafer-scale
fabrication of nanophotonic chips, leading to devices that can be
manufactured in large volumes at low cost.

A few subcomponents of a nanophotonic circuit are displayed
in Fig. 1. The resulting device consists of submicrometer wide sil-
icon lines on top of a thick glass layer. Because silicon has a very
high index of refraction, the submicron line acts as a waveguide for
light: electromagnetic waves with wavelengths between 1.3 �m
and 1.55 �m can travel along the line (a so-called “photonic wire”)
without much loss.

By optimizing the geometry of the silicon, the light can be
manipulated. Fig. 1(a, c) shows a crossing of two waveguides, where
the geometry is engineered such that there is no crosstalk between
the waveguides. In Fig. 1(b, d) we change the width of the silicon
around the core of the waveguide and then stop the waveguide, so
that light can diffract in the thin layer of silicon on the chip.

3. Workflow for designing a component

To illustrate the problems associated with a manual workflow
(that is, before adopting the framework), as well as the innovation

brought by our framework, we will discuss the workflow for design-
ing a typical photonic integrated component: a multimode interfer-
ometer (MMI). Although we use an optical component to illustrate
the workflow, readers from other research domains might identify
the same or similar problems based on their own experience.

In Section 3.1 we briefly introduce this device and its typical
design steps. We show that in the classical workflow (3.2) there
are a lot of manual interactions, leading to a slow, and more impor-
tantly an error-prone workflow. A workflow based on our software
(3.3) shows how one can circumvent these problems.

3.1. Example device: MMI

We will illustrate our workflow using a device that splits the
light in a waveguide into two equal parts, an important building
block in photonic IC design. It is called a multimode interferometer
(MMI), and is depicted in Fig. 2. This example is representative to
many photonic design problems and is practiced by most photonic
designers today, irrespective of the specific tools they use in each
step of the problem. The MMI consists of a sequence of waveguide
elements of different widths and shapes. Each waveguide supports
a number of electromagnetic waveguide modes, i.e. eigensolutions
of the light distribution in the dielectric medium.

There are several aspects to modeling this device, which are
illustrated in Fig. 2. When exciting the MMI with a mode in an input
waveguide, one needs to know the shape (spatial distribution) of
this mode, called the mode profile. We calculate this waveguide
mode profile using an eigenmode solver (Fig. 2, top left). The mode
has a gaussian-like profile, as shown in the figure. The mode profile
is then entered as input for a full-wave time-domain simulation to
calculate the light propagation in the device (Fig. 2, top right). As
three-dimensional (3D) full-wave simulations are computationally
very intensive, one will first run an approximate simulation in 2D
using well-known approximation methods and only then run full
3D simulations.

In order to get a highly accurate representation of the device
characteristics, a 3D simulation is then performed. From this sim-
ulation, the scatter matrix is extracted, leading to a high-level
description of the building block. In a circuit simulation tool (Fig. 2,
bottom right), several of these building blocks are combined, in

dx.doi.org/10.1016/j.jocs.2013.05.008

Download English Version:

https://daneshyari.com/en/article/10332837

Download Persian Version:

https://daneshyari.com/article/10332837

Daneshyari.com

https://daneshyari.com/en/article/10332837
https://daneshyari.com/article/10332837
https://daneshyari.com

