
Journal of Computational Science 4 (2013) 334–344

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Algorithmic differentiation in Python with AlgoPy

Sebastian F. Walter ∗, Lutz Lehmann
Institut für Mathematik, Fakultät Math. Nat. II, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

a r t i c l e i n f o

Article history:
Received 3 February 2011
Received in revised form
14 September 2011
Accepted 3 October 2011
Available online 17 November 2011

Keywords:
Automatic differentiation
Cholesky decomposition
Hierarchical approach
Higher-order derivatives
Numerical linear algebra
NumPy
Taylor arithmetic

a b s t r a c t

Many programs for scientific computing in Python are based on NumPy and therefore make heavy use of
numerical linear algebra (NLA) functions, vectorized operations, slicing and broadcasting. AlgoPy provides
the means to compute derivatives of arbitrary order and Taylor approximations of such programs. The
approach is based on a combination of univariate Taylor polynomial arithmetic and matrix calculus in
the (combined) forward/reverse mode of Algorithmic Differentiation (AD). In contrast to existing AD
tools, vectorized operations and NLA functions are not considered to be a sequence of scalar elementary
functions. Instead, dedicated algorithms for the matrix product, matrix inverse and the Cholesky, QR,
and symmetric eigenvalue decomposition are implemented in AlgoPy. We discuss the reasons for this
alternative approach and explain the underlying idea. Examples illustrate how AlgoPy can be used from
a user’s point of view.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In scientific computing, mathematical functions are described
by computer programs. Algorithmic (aka Automatic) Differentiation
(AD) can be used to obtain polynomial approximations and deriva-
tive tensors of such functions in an efficient and numerically stable
way. It is also suitable for programs with thousands of lines of code
and is not to be confused with symbolic or numerical differentia-
tion. The website http://www.autodiff.org provides an overview
of current and past research. See also the standard references
[16,15,3]. The most important features of AD are:

1. The computed derivatives have a finite-precision error on par
with the nominal function evaluation.

2. The number of operations OPS({f, ∇ f}) to evaluate both the func-
tion f : R

N → R and its gradient ∇f is less than ω · OPS(f), where
ω ∈ [3, 4]. The gradient is thus at most four times more expen-
sive than the function itself, no matter what N is [16]. Please note
that this is a theoretical result: the actually observed ratio on a
computer is generally worse.

3. It is possible to write programs in such a way that an AD tool can
be applied with no or only small changes to the code.

∗ Corresponding author.
E-mail addresses: sebastian.walter@gmail.com (S.F. Walter),

llehmann@mathematik.hu-berlin.de (L. Lehmann).

Python is a popular programming language for scientific com-
puting [34,33]. It has a clear syntax, a large standard library and
there exist many packages useful for scientific computing. The de
facto standard for array and matrix manipulations is provided by
the package NumPy [26] and thus many scientific programs in
Python make use of it. In consequence, concepts such as broad-
casting, slicing, element-wise operations (ufuncs) and numerical
linear algebra functions (NLA) are used on a regular basis.

The tool AlgoPy provides the possibility to compute high-order
univariate Taylor polynomial approximations and derivatives (gra-
dient and Hessian) of such programs. It is implemented in pure
Python and has only NumPy and SciPy [20] as dependencies. Official
releases can be obtained from [36].

The purpose of this paper is to serve as a reference for AlgoPy
and to popularize its unique ideas. The target audience are potential
users of AlgoPy as well as developers of other AD tools.

• We briefly discuss the forward and reverse mode of AD in Section
2. It is not the goal to provide a tutorial, but to explain how the
theory is related to the implementation. We deem this discussion
important for two reasons:
1 It equips the user with the necessary know-how to extend the

functionality of AlgoPy.
2 To debug code it is necessary to understand what is happening

behind the scenes.
• AlgoPy offers dedicated support for several numerical linear

algebra functions such as the Cholesky, QR and real sym-
metric eigenvalue decomposition. This is, to the authors’ best

1877-7503/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jocs.2011.10.007

dx.doi.org/10.1016/j.jocs.2011.10.007
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
http://www.autodiff.org
mailto:sebastian.walter@gmail.com
mailto:llehmann@mathematik.hu-berlin.de
dx.doi.org/10.1016/j.jocs.2011.10.007

S.F. Walter, L. Lehmann / Journal of Computational Science 4 (2013) 334–344 335

Table 1
The three-part form of the function f(x) = sin (x1 + cos (x2)x1).

Independent v−1 = x1 = 3
Independent v0 = x2 = 7

v1 = �1(v0) = cos(v0)

v2 = �2(v1, v−1) = v1v−1

v3 = �3(v−1, v2) = v−1 + v2

v4 = �4(v3) = sin(v3)

Dependent y = v4

Fig. 1. This plot shows the computational graph of the function
f(x) = sin (x1 + cos (x2)x1). The independent and dependent variables are depicted as
octagons whereas intermediate variables are represented as rectangles.

knowledge, a unique feature of AlgoPy. In Section 3 we give a
concise description of the approach.

• Finally, we compare in Section 4 the runtime of several related
tools on some simple test examples to allow a potential user to
decide whether the current state of AlgoPy is efficient enough for
the task at hand.

2. Relating theory and implementation

The purpose of this section is to summarize the forward and
reverse mode of AD and describe how these two concepts are imple-
mented in AlgoPy.

2.1. Computational model

Let F : R
N → R

M , x �→ y = F(x) be the function of interest. We
require that it can be written as a finite sequence of dif-
ferentiable instructions. Traditionally, the instructions include
±, ×, ÷,

√ · , exp(·) and the (hyperbolic) trigonometric functions as
well as their inverse functions. We refer to them as scalar elementary
functions to distinguish them from vector and matrix operations as
they will be discussed in Section 3. The quantity x is called the inde-
pendent variable and y is the dependent variable. In the important
special case M = 1 we use f instead of F.

As an example, consider the function f : R
2 → R,

x �→ y = f(x) = sin (x1 + cos (x2)x1). The sequence of operations to
evaluate f(3, 7) is shown in Table 1. This representation is called
three-part form. Each intermediate variable is computed by an
elementary function call vl = �l(vi≺l), where vi≺l is the tuple of
input arguments of �l. For a more detailed discussion of the com-
putational model and its relation to algorithmic differentiation see
Griewank [14]. Alternatively one can represent the computational
sequence also as computational graph. This is shown in Fig. 1.

2.2. Forward mode

We follow the approach of ADOL-C [16] and use univariate
Taylor polynomial (UTP) arithmetic to evaluate derivatives in the
forward mode of AD. One can find a comprehensive introduction of
the approach in [25].

Let � > 0 and F : R
N → R

M be sufficiently smooth. Define the
smooth curve y(t) = F(x(t)) for a given smooth curve x : (−�, �) ∈ R

N .
One can compute the first directional derivative of F by setting
x(t) = x[0] + x[1]t and computing the first-order Taylor approximation

y[0] + y[1]t = F(x[0] + x[1]t) + O(t2)

= F(x[0]) + dF

dt
(x(t))

∣∣∣
t=0

t .

The use of the chain rule yields the directional derivative

dF

dt
(x(t))

∣∣∣
t=0

= ∂F

∂x
(x[0]) · x[1] .

E.g., by choosing x[1] to be the ith Cartesian basis vector ei one

obtains ∂F
∂xi

(x)
∣∣∣
x=x[0]

as result.

The important point to notice is that the desired direc-
tional derivative does not depend on t. To generalize the idea
to higher-order derivatives, one extends functions F : R

N →
R

M , x �→ y = F(x), to functions ED(F) : R
N[T]/(TD) → R

M[T]/(TD),
[y]D = ED(F)([x]D). We denote representatives of the polynomial fac-
tor ring R

N[T]/(TD) as

[x]D := [x[1], . . . , x[D−1]] :=
D−1∑
d=0

x[d]T
d , (1)

where x[d] ∈ R
N is called a Taylor coefficient. The quantity T is an

indeterminate, i.e., a formal variable. It plays a similar role for the
polynomials as i := √−1 for the complex numbers. We make a
distinction between t and T to stress that t is regarded as real vari-
able whereas T is an indeterminate. The extended function ED(F) is
defined by its action

[y]D =
D−1∑
d=0

y[d]T
d = ED(F)([x]D) (2)

=
D−1∑
d=0

1
d!

dd

dtd
F

(
D−1∑
d=0

x[d]t
d

)∣∣∣∣∣
t=0

Td . (2)

The fundamental result of the forward mode is that the oper-
ator ED is a function composition preserving homomorphism.
Explicitly, for any sufficiently differentiable composite function
F(x) = (H ◦ G)(x) = H(G(x)) it holds that

ED(H ◦ G) = ED(H) ◦ ED(G) . (3)

Since any function satisfying the assumptions from Section 2.1 can
be written as such a composite function (c.f. [14]), it completely
suffices to provide algorithms for [y]D = ED(�)([x]D), where

� ∈ {±, ×, ÷, sin, exp, . . .} .

Tables 2 and 3 show an incomplete list of the most important algo-
rithms [16,24]. They are shown here to stress their similarity to the
algorithms shown in Section 3.

Download English Version:

https://daneshyari.com/en/article/10332839

Download Persian Version:

https://daneshyari.com/article/10332839

Daneshyari.com

https://daneshyari.com/en/article/10332839
https://daneshyari.com/article/10332839
https://daneshyari.com

