
Please cite this article in press as: R.M. Amorim, R. Weber dos Santos, Solving the cardiac bidomain equations using graphics processing
units, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012.06.007

ARTICLE IN PRESSG Model
JOCS-153; No. of Pages 7

Journal of Computational Science xxx (2012) xxx–xxx

Contents lists available at SciVerse ScienceDirect

Journal of Computational Science

j ourna l h o me page: www.elsev ier .com/ locate / jocs

Solving the cardiac bidomain equations using graphics processing units

Ronan Mendonç a Amorim, Rodrigo Weber dos Santos ∗

Graduate Program in Computational Modeling, University of Juiz de Fora, Brazil

a r t i c l e i n f o

Article history:
Received 23 December 2011
Received in revised form 22 June 2012
Accepted 28 June 2012
Available online xxx

Keywords:
Cardiac modeling
Bidomain equations
Graphics processing units
Preconditioned conjugate gradient
Multigrid method

a b s t r a c t

The computational modeling of the heart has been shown to be a very useful tool. The models, which
become more realistic each day, provide a better understanding of the complex biophysical processes
related to the electrical activity in the heart, e.g., in the case of cardiac arrhythmias. However, the
increasing complexity of the models challenges high performance computing in many aspects. This work
presents a cardiac simulator based on the bidomain equations that exploits the new parallel architecture
of graphics processing units (GPUs). The initial results are promising. The use of the GPU accelerates the
cardiac simulator by about 6 times compared to the best performance obtained in a general-purpose pro-
cessor (CPU). In addition, the GPU implementation was compared to an efficient parallel implementation
developed for cluster computing. A single desktop computer equipped with a GPU is shown to be 1.4
times faster than the parallel implementation of the bidomain equations running on a cluster composed
of 16 processing cores.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Modern cell models of cardiac electrophysiology are described
by nonlinear systems of differential equations with tens of variables
and nearly hundreds of parameters whereas the number of vari-
ables explodes to the millions or tens of millions in cardiac tissue or
whole organ models. The set of bidomain equations [1] is currently
the most complete mathematical model for describing the spread
of cardiac electrical activity and is especially suited to simulate
activity on the organ level. The complexity associated with car-
diac modeling demands high performance computing and efficient
numerical methods. Several efficient numerical methods have been
proposed to tackle this problem. For instance, we refer the reader to
the performance evaluation of multigrid-based methods reviewed
in [2] and to the recent work on mesh adaptivity presented in [3].
A common feature of these works is that the proposed numerical
methods are tailored to parallel environments based on clusters of
computers. Thus far, this combination of sophisticated numerical
methods and cluster computing has been shown to be one of the
most efficient ways to solve the cardiac bidomain equations.

Recently, new parallel architectures have emerged. In partic-
ular, as the performance of modern graphics hardware increases
and becomes more flexible in terms of programmability, many
researchers are applying this new technology to problems pre-
viously solved with general-purpose processors (CPUs) or with

∗ Corresponding author.
E-mail address: rodrigo.weber@yahoo.com (R. Weber dos Santos).

clusters of computers [4]. Some recent papers have evaluated the
new computer architecture based on graphics processing units
(GPUs) for the solution of cardiac models. In [5,6], two different
implementations that exploit the new architecture of GPUs were
presented for the monodomain equations, a simplified model for
cardiac electrophysiology. In [7,8], GPUs were used to accelerate
the numerical solution of cardiac myocyte models.

In this work, we present a GPU implementation of the full cardiac
bidomain equations that uses implicit and sophisticated numerical
methods such as multigrid preconditioners. The GPU implementa-
tion was compared both in terms of speed and numerical accuracy
to an equivalent CPU implementation. In addition, the GPU imple-
mentation was compared to an efficient parallel implementation
developed for cluster computing [9]. The preliminary results are
promising: the use of the GPU accelerated the cardiac simulator by
about 6 times compared to the best performance obtained using a
CPU. In addition, a single desktop computer equipped with a GPU
is shown to be 1.4 times faster than the parallel implementation
of the bidomain equations running on a cluster composed of 16
processing cores.

Current GPUs offer limited support for double-precision opera-
tions. In this paper we show that the numerical errors associated
with single-precision operations of the GPUs may impair the solu-
tion of the bidomain equations. Therefore, this work presents
the special methods that are needed by the GPU implementation
in order to keep the numerical errors under control. Finally, we
present a detailed performance analysis that points out the tasks
of the numerical algorithms associated to the bidomain equations
that deserve better GPU implementations on future works.

1877-7503/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2012.06.007

dx.doi.org/10.1016/j.jocs.2012.06.007
dx.doi.org/10.1016/j.jocs.2012.06.007
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:rodrigo.weber@yahoo.com
dx.doi.org/10.1016/j.jocs.2012.06.007

Please cite this article in press as: R.M. Amorim, R. Weber dos Santos, Solving the cardiac bidomain equations using graphics processing
units, J. Comput. Sci. (2012), http://dx.doi.org/10.1016/j.jocs.2012.06.007

ARTICLE IN PRESSG Model
JOCS-153; No. of Pages 7

2 R.M. Amorim, R. Weber dos Santos / Journal of Computational Science xxx (2012) xxx–xxx

2. Methods

The bidomain equations [1] represent a homogenization of
cardiac tissue by replacing the individually coupled cells with a syn-
cytium. Each point in space is considered to exist in two domains,
the intra- and extracellular domains, which are superimposed on
one another. Any discrete objects are averaged over the volume.
The equations model how cellular electric potentials (transmem-
brane voltage, Vm, and extracellular potential, �e or Ve) depend on
the concentrations of several ionic species and on ionic currents
(Iion) that cross the cell membrane. The bidomain equations may be
casted in different ways [10], in this work we write the equations
as follows:

∇ · (�i + �e)∇Ve = −∇ · �i∇Vm (1)

∇ · �i∇Vm = −∇ · �i∇Ve + ˇIm (2)

Im = Cm
∂Vm

∂t
+ Iion(Vm, �) (3)

where �i and �e are, the intracellular and extracellular conductiv-
ity tensors, respectively, i.e., 3 × 3 symmetric matrices that vary in
space and describe the anisotropy of the cardiac tissue; ̌ is the
surface to volume ratio of the cardiac cells; Cm is the membrane
capacitance per unit area; Vm is the transmembrane voltage; and
Iion is the ionic current density flowing through the membrane ionic
channels and depends on the transmembrane voltage and several
other variables that we represent by �. The intracellular and extra-
cellular domains are modeled as linear electrostatic media. The
nonlinearity arises in the current–voltage relationship across the
membrane (Eq. (3)) which is described by a set of nonlinear ordi-
nary differential equations (ODEs). The bidomain equations may be
considered as a coupled set of an elliptic partial differential equa-
tion (PDE, Eq. (1)), a parabolic PDE (Eq. (2)), and a non-linear system
of ODEs (Eq. (3)).

The cardiac simulations performed in this work were based on
the Left Ventricular Wedge models previously published in [11].
This model includes a 2D discretization of the bidomain equa-
tions that considers three different ventricular myocyte models
for the epicardium, M cells, and endocardium [12]. The tissue was
immersed in an isotropic and homogeneous conducting medium
that simulates the experimental bath. The parameters of the tissue-
bath model such as the conductivity tensors were identical to those
described in [11]. A stimulus current was applied on a selected part
of the endocardial region. The space discretization was performed
using the finite elements method with square elements and bilin-
ear interpolation. The time discretization for the parabolic equation
was achieved by using the Crank–Nicolson method. The space and
time discretizations used were 40 �m and 10 �s, respectively. A
total of 40 time steps were simulated.

Five different tissues were simulated with a fixed width of 513
mesh points (2 cm) and different heights: 33, 65, 129, 257, 513 and
1025 mesh points. These rectangular setups were based on our pre-
vious work that discussed the influence of different phenotypes for
ventricular myocyte models (epicardial cells, M cells, and endocar-
dial cells) on the waveform of electrograms (with specific focus on
repolarization and electrotonic effect) taken from a Left Ventricular
Wedge model [11]. Fig. 1 presents a tissue composed of 513 × 257
mesh points.

Using an operator splitting scheme, each time step of the
numerical method involved the solution of three different tasks:
a non-linear system of ODEs, a linear system derived from the dis-
cretization of a parabolic PDE, and a linear system derived from the
discretization of an elliptic PDE. The preconditioned conjugate gra-
dient method (PCG) was used to solve the linear systems derived
from the discretization of the PDEs. The PCG convergence condition
was set to an absolute tolerance of 10−6. We used three different

Fig. 1. Tissue with 513 × 257 mesh points simulated with an current stimulus
applied on the endocardial site. The tissue is placed in a bath.

preconditioners combined with the PCG algorithm: block Jacobi,
block ILU(0) (incomplete LU factorization), and geometric multi-
grid [13]. The multigrid method consists of three basic operations:
relaxation by using an iterative solver, restriction of the residual to
a coarser grid, and interpolation of the solution to a finer grid.

In this work, we compared three different implementations of
the bidomain equations: a GPU implementation, GPU; a CPU imple-
mentations that is equivalent to the GPU one, CPU; and a parallel
CPU implementation, Cluster.

The GPU implementation used the explicit Euler method to solve
the nonlinear ODEs system, a conjugate gradient preconditioned
with Jacobi to solve the linear system from the parabolic equation,
and a conjugate gradient preconditioned with geometric multigrid
to solve the linear system from the elliptic equation. The multigrid
preconditioner used ω-Jacobi as the relaxation method with ω = 0.8.
The number of steps used, i.e., the number of Jacobi sweeps per
grid level as part of the MG preconditioner, was 2 (level + 1) where
level = 0 for the coarsest grid. On the coarsest level, the ‘exact’ solu-
tion was given by the conjugate gradient method with an absolute
tolerance of 10−15. The number of grid levels used was 6, 7, 8, 9,
10 and 10 for the tissues with dimensions of 513 × 33, 513 × 65,
513 × 128, 513 × 257, 513 × 513 and 513 × 1025, respectively. The
values of these parameters were found empirically by testing a large
set of values: ω was tested with values from 0.05 to 0.90 in steps of
0.05; the number of ω-Jacobi iterations uses the formula n (level + 1)
and n was tested with the values 1, 2 and 3; the number of grid
levels experimented were 6, 7, 8, 9 and 10; and the tolerance for
the convergence test used at the coarsest level was tested with the
values 10−6, 10−9, 10−12, 10−15 and 10−18.

The second implementation, CPU, was the CPU sequential
implementation using the same methods implemented in GPU.

The third implementation, Cluster, was a parallel implementa-
tion tailored to cluster of CPUs. Cluster used the conjugate gradient
preconditioned with ILU(0) (with block Jacobi in parallel) to solve
the linear system from the parabolic equation and a conjugate gra-
dient preconditioned with geometric multigrid to solve the linear
system from the elliptic equation. The geometric multigrid used
only two levels with one processor, a fine and a coarse grid, and
four levels in parallel (with more than one processor). Gauss-Seidel
was used as the relaxation method. On the coarsest level, the direct
LU method was used. To solve the non-linear system of ODEs, the
explicit Euler method was used. The Cluster implementation used
the PETSc [14] and MPI [15] libraries. More details about this par-
allel implementation can be found in [9,16,17].

Section 3 compares the performance of the three implemen-
tations. Because the GPU implementation uses single precision
operations, Section 3 also presents an analysis of the numerical

dx.doi.org/10.1016/j.jocs.2012.06.007

Download English Version:

https://daneshyari.com/en/article/10332843

Download Persian Version:

https://daneshyari.com/article/10332843

Daneshyari.com

https://daneshyari.com/en/article/10332843
https://daneshyari.com/article/10332843
https://daneshyari.com

