
Journal of Computational Science 4 (2013) 377–385

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

Efficient SIMD solution of multiple systems of stiff IVPs

Andrew Kroshko, Raymond J. Spiteri ∗

Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada

a r t i c l e i n f o

Article history:
Received 22 March 2012
Received in revised form 24 August 2012
Accepted 27 August 2012
Available online 7 September 2012

Keywords:
Ordinary differential equations
Stiff equations
Parallel computing
Chemical reactions
CO2 reforming
Plug flow reactor
Cell broadband engine

a b s t r a c t

The parallel solution of multiple systems of initial-value problems (IVPs) in ordinary differential equa-
tions is challenging because the amount of computation involved in solving a given IVP is generally not
well correlated with that of solving another. In this paper, we describe how to efficiently solve multiple
systems of stiff IVPs in parallel within a single-instruction, multiple-data (SIMD) implementation on the
Cell Broadband Engine (CBE) of the RODAS solver for stiff IVPs. We solve two systems of stiff IVPs simulta-
neously on each of the eight synergistic processing elements per CBE chip for a total of 16 systems of IVPs.
We demonstrate a speedup of 1.89 (a parallel efficiency of over 94%) over the corresponding serial code
on a realistic example involving the operation of a chemical reactor. The techniques described apply to
other multi-core processors besides the CBE and can be expected to increase in importance as computer
architectures evolve to feature larger word sizes.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many important physical processes are described by initial-
value problems (IVPs) in ordinary differential equations (ODEs).
These IVPs must typically be solved numerically, and for the pur-
poses of obtaining solutions as quickly as possible, a great deal of
attention is being given to algorithms that take advantage of par-
allel computing. We are interested in the simultaneous solution of
systems of IVPs, e.g., systems of ODEs that are to be solved with
different parameter values, initial conditions, etc. The approach
we take is based on the paradigm known as single instruction
multiple data (SIMD) [1], a form of parallelism in which multiple
pieces of data are processed simultaneously by the same instruc-
tion. Although it might appear at first that solving systems of IVPs
simultaneously is easily amenable to massive multiple-instruction,
multiple-data parallelization, the amount of computation associ-
ated with solving a given IVP is generally not well correlated with
that of solving another. Consequently a straightforward implemen-
tation of such an algorithm would likely suffer from poor load
balancing and not perform well. Furthermore at present such archi-
tectures are not commonly available. On the other hand, SIMD
is a common feature on modern processors, such as graphics
processing units (GPUs), the Intel x86 architecture, where it is called
streaming SIMD extensions, and the Cell Broadband Engine (CBE),
where in fact it is the only mode of operation on the synergistic

∗ Corresponding author.
E-mail address: spiteri@cs.usask.ca (R.J. Spiteri).

processing elements (SPEs). The CBE is currently used in scientific
computing on both large [2–4] and small scales [5,6] due to its high
floating-point throughput. The CBE allows SIMD instructions to be
used without resorting to assembly language and provides a great
deal of programmer control over memory management. The SPEs
do not have features such as instruction reordering that are typi-
cal of other architectures; therefore the number of clock cycles to
execute any program is highly predictable, making the CBE ideal
for controlled experiments with algorithms involving SIMD [7].
This also makes the CBE ideal for the study of algorithms that take
advantage of new computer architectures. SIMD is often applied
in situations in which there are several independent problems that
share a common solution algorithm applied to different data. How-
ever, we show that SIMD can also be applied in less straightforward
situations, e.g., when the solution algorithm has parts that execute
different instructions depending on the data.

We implement a RODAS solver [8] to exploit SIMD instructions
when solving multiple systems of stiff IVPs simultaneously. The
numerical solution of individual IVPs is also in general not easily
parallelizable, especially within the SIMD paradigm. One imme-
diate issue faced is that the number of steps taken by variable
step-size IVP solvers is problem dependent, thus reducing the effec-
tiveness of SIMD instructions. A second issue is that the standard
algorithm used for step-size control is also not conducive to the use
of SIMD instructions due to branching. We do not address these
issues here. Rather we use a mathematical model for the kinetics
involved in CO2 reforming [9,10] to demonstrate that these issues
affect only a small part of the overall computational effort within a
SIMD strategy for the parallel solution of multiple systems of IVPs.

1877-7503/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2012.08.017

dx.doi.org/10.1016/j.jocs.2012.08.017
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:spiteri@cs.usask.ca
dx.doi.org/10.1016/j.jocs.2012.08.017

378 A. Kroshko, R.J. Spiteri / Journal of Computational Science 4 (2013) 377–385

The remainder of the paper is organized as follows. In Section 2,
we give a description of the IVP solver RODAS and our SIMD imple-
mentation of it to simultaneously solve multiple IVPs. In Section 3,
we briefly describe an example on which we test the SIMD RODAS
solver. The example involves the operation of a chemical reactor.
In Section 4, we demonstrate the effectiveness of our implementa-
tion on this example. Finally, in Section 5 we offer some conclusions
from this study.

2. A SIMD Rosenbrock solver for multiple stiff IVP systems

To illustrate the SIMD solution of multiple systems of stiff IVPs,
we choose the Rosenbrock method from the RODAS solver [8].
This method is fourth-order accurate with a third-order embedded
method for error and step-size control. Error and step-size control
are generally considered essential for the efficiency and reliability
of IVP solvers. These solvers use a local error estimate to take the
largest step sizes possible while still meeting a user-specified error
tolerance. In practice, the steps used by constant step-size solvers
are constrained by the most difficult regions of the problem, ulti-
mately leading to unacceptably large errors or long computation
times. A further advantage of Rosenbrock methods is that, unlike
general fully implicit Runge–Kutta methods for which nonlinear
equations must be solved for each stage, only a system of linear
equations must be solved for each stage. Thus a linearly implicit
Runge–Kutta method is typically only moderately more complex
to implement than an explict Runge–Kutta method [8]. This form
of implicitness is of further advantage for SIMD implementations
because the direct solution of linear systems of a given size requires
a highly predictable number of operations. However, Rosenbrock
methods are not generally as stable as fully implicit methods. In
practice, this means that the integration may require smaller steps
than it would with a fully implicit method. Nonetheless, the over-
all trade-off in terms of computation time is often still favourable
because each step of a Rosenbrock method is much less expensive.
The specific Rosenbrock method in RODAS was designed to satisfy
additional order conditions for differential-algebraic equations in
order to enhance its stability [8].

To simplify the presentation but without loss of generality, we
consider IVPs in autonomous form

ẏ = f(y), t0 < t < tf , y(t0) = y0, (1)

where y is an m-vector describing the state of the system at time
t and the right-hand side function f : R

m → R
m does not depend

explicitly on the independent variable t. This also allows several
simplifying assumptions in the implementation of RODAS solvers.

An s-stage Rosenbrock method to advance a numerical solution
of (1) from yn ≈ y(tn) at t = tn to yn+1 ≈ y(tn+1) at tn+1 = tn + �tn is given
by

k(i) = �tn f

⎛
⎝yn +

i−1∑
j=1

˛ijk
(j)

⎞
⎠+ �tn Jn

i∑
j=1

�ijk
(j),

i = 1, 2, . . . , s, (2a)

yn+1 = yn +
s∑

i=1

ˇik
(i), (2b)

where k(i) is stage i of the current step, ˛ij are the coefficients for the
explicit part of the method, � ij are the coefficients for the (linearly)
implicit part of the method, and ˇi are the so-called quadrature

weights. Here, Jn is the Jacobian matrix of partial derivatives of f
with elements defined by

Jn(i, j) = ∂fi
∂yj

, i, j = 1, 2, . . . , m, (3)

where fi is component i of f and yj is component j of y in (1), eval-
uated at yn. Each k(i) is determined from the solution of a system
of linear equations with the coefficient matrix (I − �t � ii Jn). The
Rosenbrock method used in RODAS chooses �11 = �22 = . . . = �ss = � ,
and thus only requires one LU-decomposition per step instead of
one per stage.

Direct implementation of (2) also involves matrix-vector multi-
plications Jn k(j), j = 1, 2, . . ., i − 1, at stage i. We thus introduce new
variables

u(i) =
i∑

j=1

�ijk
(j), i = 1, 2, . . . , s.

If � ii /= 0, i = 1, 2, . . ., s, then the lower-triangular matrix � with
elements �(i, j) = � ij is invertible, and we can write

k(i) = 1
�ii

u(i) −
i−1∑
j=1

giju
(j), (4)

where gij is the (i, j) element of the matrix

G = diag(�−1
11 , . . . , �−1

ss) − �−1.

Using (4) in (2) yields

(
1

�tn �ii
I − Jn

)
u(i) = f

⎛
⎝yn +

i−1∑
j=1

aiju
(j)

⎞
⎠+

i−1∑
j=1

(gij

�tn

)
u(j),

i = 1, 2, . . . , s, (5a)

yn+1 = yn +
s∑

j=1

bju
(j), (5b)

where aij are the coefficients of the explicit part of the new formula

that are given by element (i, j) of the matrix A �−1 with A(i, j) = ˛ij ,
gi,j are the coefficients for the linearly implicit part of new for-
mula, and bj are the quadrature weights of the new formula that

are given by component j of the vector B �−1 with B(i) = ˇi. This
form of a Rosenbrock method avoids matrix-vector multiplications
and hence is more efficient to implement.

In the RODAS solver, the main method, which is used to advance
the numerical solution, is fourth order and contains s = 6 stages. The
RODAS solver also has a 5-stage embedded method that produces a
result of third order. For efficiency, the embedded method also pro-
vides the explicit part of stage 6 of the main method; i.e., no further
evaluations of f(y) are required before solving the linear system to
obtain k(6). The main and embedded methods have different values
for the quadrature weights bj in (5b).

Error and step-size control are implemented as follows. The local
error estimate at time tn+1 is defined as

en+1 = yn+1 − ŷn+1,

where yn+1, ŷn+1 are the results from the main and embedded meth-
ods, respectively. In the RODAS solver, en+1 is generated directly and
added to ŷn+1 to calculate yn+1. A mixed error tolerance at time tn+1
is computed for solution components, i = 1, 2, . . ., m, according to

�n+1,i = �abs,i + �rel,i |yn+1,i|,

Download	English	Version:

https://daneshyari.com/en/article/10332844

Download	Persian	Version:

https://daneshyari.com/article/10332844

Daneshyari.com

https://daneshyari.com/en/article/10332844
https://daneshyari.com/article/10332844
https://daneshyari.com/

