
Journal of Computational Science 4 (2013) 401–411

Contents lists available at ScienceDirect

Journal of Computational Science

journa l h om epage: www.elsev ier .com/ locate / jocs

An algorithm for massively parallel dislocation dynamics simulations
of small scale plasticity

Kenneth W. Leiter, Joshua C. Crone, Jaroslaw Knap ∗

Computational Science and Engineering Branch, RDRL-CIH-C, US Army Research Laboratory, Aberdeen Proving Ground, MD 21005-5066, USA

a r t i c l e i n f o

Article history:
Received 30 October 2012
Received in revised form 8 February 2013
Accepted 17 February 2013
Available online 15 March 2013

Keywords:
Dislocation dynamics
Finite element method
Parallel computing

a b s t r a c t

Accurate modeling of dislocation motion in bounded bodies is essential for the goal of obtaining desired
properties, for example electronic or optical, of many microelectronic devices. At present, we lack high
fidelity computer codes for such modeling that efficiently utilize modern parallel computer architectures.
In contrast, many dislocation simulation codes are available for periodic or infinite bodies. In principle,
these codes can be extended to allow for dislocation modeling in finite bodies. However, such extension
may involve an additional solver to be employed, coupled with a dislocation simulation code. We present
an algorithm for development of parallel dislocation simulation capability for bounded bodies based on
such coupling. Subsequently, we analyze the performance of the algorithm for a demanding dislocation
dynamics model problem.

Published by Elsevier B.V.

1. Introduction

Behavior of engineering materials is governed by the presence of
defects. Among various material defects, dislocations play a pivotal
role as primary carriers of inelastic deformation. While cooperative
dislocation motion is reasonably well understood and described
in macroscopic materials [1,2], its understanding for nano-scale
materials is still lacking. A case in point is dislocation motion in
microstructurally thin films [3,4]. A microstructurally thin film is
a film whose characteristic dimension is comparable to the char-
acteristic microstructural size. Today, most films that comprise
integrated circuits, microelectronic devices or magnetic storage
media are examples of microstructurally thin films. Understanding
how microstructural thin films deform is critical to obtain desired
electronic or optical properties of devices [5–7]. Dislocation motion
is crucial in this deformation process.

Among countless modeling techniques of material science, dis-
location dynamics [8–10] is most likely best suited to accurately
describe motion of dislocations in thin films. While there exist
several actively developed dislocation dynamics computer codes,
including microMegas [11], Tridis [12], Micro3d [13], PARANOID
[9,10], and ParaDiS [14], most can only handle simulations of
macroscopic materials or simple bounded bodies, such as boxes
or cylinders. Moreover, no existing dislocation dynamics code has
demonstrated the ability to handle general bounded bodies with
high dislocation content on modern parallel computer hardware.

∗ Corresponding author. Tel.: +1 410 278 0420.
E-mail address: jaroslaw.knap@us.army.mil (J. Knap).

The treatment of small scale plasticity by means of dislocation
dynamics commonly requires solution of a boundary value problem
of elasticity [15]. Although it is possible to implement routines to
solve the boundary value problem directly into an existing disloca-
tion dynamics code [13], efficient parallel implementation may be
difficult because of the disparate treatment of the two problems.
For example, different domain decompositions can be expected
for the two problems in parallel computing environments, which
may necessitate a significant amount of communication between
them. Furthermore, methods of solving boundary value problems
of elasticity are well established and efficient parallel computer
codes based on these methods already exist [16,17]. Therefore, a
potentially better strategy than direct implementation, and the one
we explore in this article, is to couple an existing parallel disloca-
tion dynamics code to an existing parallel boundary value problem
solver. This choice has the advantage of introducing minimal mod-
ifications to the codes and promotes encapsulation of the distinct
problems.

Efficient coupling of disparate computer codes spanning length
and time scales is an active area of research in scientific computing
[18]. The desire to couple codes is motivated by a need to capture
more sophisticated scientific phenomena and take full advantage
of large modern computational platforms as they approach the
exascale. Over the years, many methodologies have been proposed
to address the issue of efficient coupling [19–21]. One of these
methodologies, the so-called cooperative parallelism approach,
uses remote method invocation to spawn and communicate with
numerous child programs. This approach has been successfully
employed to couple a coarse parallel finite element application with
a fine constitutive material model for multiscale simulation [22].

1877-7503/$ – see front matter. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.jocs.2013.02.002

dx.doi.org/10.1016/j.jocs.2013.02.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:jaroslaw.knap@us.army.mil
dx.doi.org/10.1016/j.jocs.2013.02.002

402 K.W. Leiter et al. / Journal of Computational Science 4 (2013) 401–411

Cooperative parallelism appears ideal for loosely coupled applica-
tions where the number of child programs is unknown and where
child programs can fail or be terminated by the parent. In addition,
the cooperative parallelism methodology may be well suited for
coupling codes with non-deterministic and dynamic communica-
tion patterns and where communication is short [23].

Cooperative parallelism, however, may not be well suited as a
coupling choice for our application. The communication pattern
between the dislocation dynamics and boundary value problem
solver is deterministic and persistent. Moreover, a connection-
oriented approach may be desirable since the coupled codes may
exchange significant amounts of data.

Other coupling methodologies exist, but are not well-suited to
modern parallel hardware [24] or are overly application specific
for our needs [25,26]. For example, the Intercomm [25] and model
coupling toolkit [26] projects provide mechanisms for communica-
tion and interpolation of data between two grid-based applications.
In contrast, we require a more general coupling approach. To sat-
isfy our requirements for a general coupling approach capable of
efficiently handling communication of large amounts of data, we
employ distributed shared memory as the coupling mechanism
between a dislocation dynamics code and a boundary value prob-
lem solver [27]. In this article we describe the coupling algorithm
in detail and evaluate parallel performance of the application for
handling large dislocation dynamics simulations of small scale plas-
ticity.

2. Dislocation dynamics

In recent years, meso-scale simulations based on dislo-
cation dynamics have been the focus of many researchers
[28,11,15,9,10,12,29,13,30,31,8,14,32]. While some minor differ-
ences between individual approaches exist, their general features
are quite common. Usually, dislocation lines within a linear elas-
tic body are discretized into a set of connected line segments.
Subsequently, forces on degrees of freedom associated with these
discretized dislocation segments are computed. These forces orig-
inate from dislocation line segments interactions via their stress
fields and drag on dislocation motion. The drag forces on dislocation
line segments are calculated in terms of their respective velocities
by recourse to a drag function. The resulting ordinary differential
equations are then integrated in time allowing for updated disloca-
tion segment positions to be obtained. It is important to emphasize
that during the course of their motion dislocation segments are per-
mitted to intersect with one another. These intersections must be
properly accounted for and are ordinarily handled by a set of well-
defined topological operations. A concise representation of the
main components of a dislocation dynamics simulation is shown
in Fig. 1. An in-depth description of dislocation dynamics is beyond
the scope of this article. We summarize, however, the main points
of the theory below. In our summary we closely follow Bulatov and
Cai [8] and Arsenlis et al. [14].

2.1. Representation of dislocation lines

In the classical theory of dislocations (c.f. [33,34]) individual dis-
locations are treated as lines contained within a linear elastic body
B ⊂ R

3. These dislocation lines are constrained to terminate at sur-
faces of the body, ∂B, but are otherwise free to move within B. With
each point along a dislocation line we associate the Burgers vector,
b ∈ R

3, representing the direction of the local distortion of the crys-
tal lattice related to the dislocation. The practicality of dislocation
dynamics hinges upon a simplified treatment of these dislocation
lines. To this end, each dislocation line is approximated by a set
of straight dislocation segments D = {s1, s2, s3, . . .}. In turn, each

Topological
Operations

Position
Update

Force
Calculation

Begin New Cycle
Evaluate forces on

discretized dislocations
due to stress field

Append drag forces

Apply time integrator

Resolve direct intersections of
discretized dislocations

Perform adaptive
refinement of discretized

dislocations

Fig. 1. The main components of a dislocation dynamics simulation.

dislocation segment, si, is treated as an ordered pair of vertices, i.e.
si = (v1

i
, v2

i
), with the corresponding Burgers vector, bi. We more-

over assume that v2
i

and v1
i+1 are equivalent, i.e. correspond to the

same vertex. In addition, while vertices are allowed to belong to
multiple dislocation segments, each dislocation segment may only
belong to a single discretized dislocation line.

With the above representation at hand, the coordinates of a
point P ∈ si along a discretized dislocation line D, x(P), are readily
computed by linear interpolation

x(P) = x1
i (1 − �) + x2

i �, (1)

where x1
i
, x2

i
are, respectively, the coordinates of vertices v1

i
, v2

i
,

and � ∈ [0, 1] denotes the value of the parametric coordinate along
si corresponding to P.

We emphasize that a choice of dislocation line representation is
not, by any means, limited to the one introduced above. As a matter
of fact, other representations have been successfully employed in
dislocation dynamics simulations (e.g. [29,9]).

2.2. Computation of forces

The presence of dislocation lines in B, along with applied trac-
tions and displacements on ∂B, induces at every point in B stress
� ∈ Sym(R3) [33–35]. Sym(R3) is the space of symmetric second-
rank tensors over R

3. This stress field acts on discretized dislocation
lines yielding a force density (per unit length) fPK

i at a point P ∈ si
with coordinates x(P)

fPK
i (x) = [�(x)bi] × ti, (2)

where bi is the segment Burgers vector, ti is the tangent direction
of si, and × is the vector (cross) product in R

3. fPK
i can be inte-

grated along si and apportioned to each of the two segment vertices
according to

f1
i = |si|

∫ 1

0

fPK
i (�) (1 − �) d�, (3)

f2
i = |si|

∫ 1

0

fPK
i (�) � d�. (4)

Here, |si| denotes the length of si and � is the parametric coordi-
nate along si. Individual segment force contributions (3) and (4)
are accumulated at each vertex giving rise to a net vertex force.

Download English Version:

https://daneshyari.com/en/article/10332847

Download Persian Version:

https://daneshyari.com/article/10332847

Daneshyari.com

https://daneshyari.com/en/article/10332847
https://daneshyari.com/article/10332847
https://daneshyari.com

