
Journal of Computational Science 4 (2013) 412–422

Contents lists available at ScienceDirect

Journal of Computational Science

j ourna l h om epage: www.elsev ier .com/ locate / jocs

Analysing and modelling the performance of the HemeLB lattice-Boltzmann
simulation environment

Derek Groen ∗, James Hetherington, Hywel B. Carver, Rupert W. Nash, Miguel O. Bernabeu,
Peter V. Coveney
Centre for Computational Science, University College London, London, United Kingdom

a r t i c l e i n f o

Article history:
Received 29 August 2012
Received in revised form 22 January 2013
Accepted 17 March 2013
Available online 26 March 2013

Keywords:
Lattice-Boltzmann
Parallel computing
High-performance computing
Performance modelling

a b s t r a c t

We investigate the performance of the HemeLB lattice-Boltzmann simulator for cerebrovascular blood
flow, aimed at providing timely and clinically relevant assistance to neurosurgeons. HemeLB is optimised
for sparse geometries, supports interactive use, and scales well to 32,768 cores for problems with ∼81
million lattice sites. We obtain a maximum performance of 29.5 billion site updates per second, with only
an 11% slowdown for highly sparse problems (5% fluid fraction). We present steering and visualisation
performance measurements and provide a model which allows users to predict the performance, thereby
determining how to run simulations with maximum accuracy within time constraints.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Recent progress in imaging and computing technologies has
resulted in an increased adoption of computational methods in the
life sciences. Using modern imaging methods, we are now able to
scan the geometry of individual vessels within patients and map
out potential sites for vascular malformations such as intracranial
aneurysms. Likewise, recent increases in computational capacity
and algorithmic improvements in simulation environments allow
us to simulate blood flow in great detail. The HemeLB lattice-
Boltzmann application [1] aims to combine these two develop-
ments, thereby allowing medical scans to be used as input for blood
flow simulations. It also enables clinicians to run such simulations
in real-time, providing runtime visualisation feedback as well as the
ability to steer the simulation and its visualisation [2]. One princi-
pal long-term goal for HemeLB is to act as a production toolkit that
provides both timely and clinically relevant assistance to surgeons.
To achieve this we must not only perform extensive validation and
testing for accuracy, reliability, usability and performance, but also
ensure that the legal environment and the medical and computa-
tional infrastructure are made ready for such use cases [4].

In this work we investigate the performance aspects of
the HemeLB environment, taking into account the core lattice-
Boltzmann (LB) simulation code and the visualisation and steering

∗ Corresponding author.
E-mail addresses: djgroennl@gmail.com, d.groen@ucl.ac.uk (D. Groen).

facilities. We present performance measurements from a large
number of runs using both sparse and non-sparse geometries
and the overheads introduced by visualisation and steering. Med-
ical doctors treating patients with intracranial aneurysms are
frequently confronted with very short time scales for decision-
making. For HemeLB to be useful in such environments, it is
therefore not only essential that the code simulates close to real-
time, but also that the length of a simulation can be reliably
predicted in advance. We demonstrate that it is possible to accu-
rately characterise CPU and network performance at low core
counts and integrate this information into a model that predicts
performance for arbitrary problem sizes and core counts.

1.1. Overview of HemeLB

HemeLB is a massively parallel lattice-Boltzmann simulation
framework that allows interactive use, eventually in a medical envi-
ronment. Segmented angiographic data from patients can be read
in by the HemeLB Setup Tool, which allows the user to indicate the
geometric domain to be simulated using a graphical user interface.
The geometry is then discretised into a regular grid, which is used
to run HemeLB simulations. The core HemeLB code, written in C++,
consists of a parallelised lattice-Boltzmann application which is
optimised for sparse geometries such as vascular networks by use of
indirect addressing. We precompute the addresses of neighbouring
points within a single one-dimensional array instead of requir-
ing that the points be stored in a dense, three-dimensional array.
HemeLB also constructs a load-balanced domain decomposition

1877-7503/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jocs.2013.03.002

dx.doi.org/10.1016/j.jocs.2013.03.002
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:djgroennl@gmail.com
mailto:d.groen@ucl.ac.uk
dx.doi.org/10.1016/j.jocs.2013.03.002

D. Groen et al. / Journal of Computational Science 4 (2013) 412–422 413

Fig. 1. Graphical overview of the bifurcation geometry in the HemeLB Setup Tool. We used this geometry to generate the Bifurcation and Large Bifurcation simulation
domains. Inlets are shown by green planes, outlets by red planes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of the article.)

at runtime, allowing the user to run simulations at varying core
counts with the same simulation domain data. HemeLB is highly
scalable due to a well-optimised communication strategy and the
locality of interactions and communications in the parallelised
lattice-Boltzmann algorithm. The File I/O operations are done in
parallel using MPI-IO by a group of reading processes, which can be
adjusted in size using a compile-time parameter.

The HemeLB Steering Client is a light-weight tool that allows
users to connect remotely to their HemeLB simulation, receive
real-time visual feedback and modify parameters of the simulation
at runtime. Here, the visualisations are generated on-site within
HemeLB, using a hand-written ray-tracing kernel [2]. In our work
we run HemeLB with the steering server code enabled. As a result,
one core is reserved for steering purposes, whether or not a client
is connected, and is thereby excluded from the LB calculations.

HemeLB relies on ParMETIS version 4.0.2 [4] to perform its
domain decomposition. It constructs an initial guess using a
basic graph growing partitioning algorithm (see [1] for details),
which it then passes to ParMETIS for optimisation using the
ParMETIS V3 PartKway() function. Constructing the initial guess
requires less than a second of runtime in all cases, but the ParMETIS
optimisation typically adds between 5 and 30 s to the initialisa-
tion time. We discuss several technical aspects and performance
implications of our decomposition routine in Section 3.1.

HemeLB uses a coalesced asynchronous communication strat-
egy to optimise its scalability [5]. This system bundles all
communications for each iteration (e.g., exchanges required for the
LB algorithm, steering and visualisations) into a single batch of non-
blocking communication messages, one for each data exchange of
non-zero size between a pair of processes in each direction. As a
result, each iteration of HemeLB’s core loop has only one MPI Wait
synchronisation point, minimising the latency overhead of HemeLB
simulations. Communication of variable length data is spread over
two iterations, the sizes being transferred during the first iteration
while the actual exchange takes place during the second one.

The coalesced communication system is also used for the
phased broadcast and reduce operations which are required for
the visualisation and steering functionality. Here HemeLB arranges
the processes into an n-tree and, for broadcasts, sends data from
one level of the tree to the level below over successive iterations.
For reductions, data is sent up one level of the tree over successive

iterations. Hence, both operations can take O(log(p)) iterations, for p
cores. In this approach HemeLB does require some additional mem-
ory for communication buffers. Additionally, the responsiveness of
the steering is constrained, as data arriving in the top-most node
takes O(log(p)) iterations to be spread to all nodes.

1.2. Related work

A large number of researchers have investigated the perfor-
mance aspects of various LB simulation codes over the past decade.
These investigations have been done without real-time visualisa-
tion or steering enabled, and frequently use non-sparse geometries.
We present a performance analysis of both sparse geometries and
interactive usage modes in this work. Pohl et al. [6] compared
the performance of LB codes across three supercomputer architec-
tures, and concluded that the network and memory performance
(bandwidth and latency) are dominant components in establish-
ing a high LB calculation performance. Geller et al. [7] compared
the performance of an LB code with that of several finite element
and finite volume solvers, and deduced that LB offers superior effi-
ciency in flow problems with small Mach numbers. Williams et al.
[8] presented a hierarchical autotuning model for parallel lattice-
Boltzmann, and report a performance increase of more than a factor
3 in their simulations. Several groups have considered the per-
formance of LB solvers on general-purpose graphics processing
unit (GPGPU) architectures. In these studies, they introduced a
number of improvements, such as non-uniform grids [9], more effi-
cient memory management strategies [10,11] and LB codes which
run across multiple GPUs [12–14]. Other performance investiga-
tions include a comparison between different LB implementations
[15], hybrid parallelisations for multi-core architectures in general
[16,9,17] and performance analysis of LB codes on Cell processors
[18–20].

A few studies within the physiological domain are of special
relevance to this work. These include a performance analysis of
a blood-flow LB solver using a range of sparse and non-sparse
geometries [21] and a performance prediction model for lattice-
Boltzmann solvers [22,23]. This performance prediction model can
be applied largely to our HemeLB application, although HemeLB
uses a different decomposition technique and performs real-
time rendering and visualisation tasks during the LB simulations.

Download English Version:

https://daneshyari.com/en/article/10332848

Download Persian Version:

https://daneshyari.com/article/10332848

Daneshyari.com

https://daneshyari.com/en/article/10332848
https://daneshyari.com/article/10332848
https://daneshyari.com

