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a  b  s  t  r  a  c  t

We  have  already  shown  in a  previous  methodological  work  that  the  surrogate-based  optimization  (SBO)
approach  can  be  successful  and  computationally  very  efficient  when  reconstructing  parameters  in a
typical  nonlinear,  time-dependent  marine  ecosystem  model,  where  a one-dimensional  application  has
been  considered  to test  the method’s  functionality  in a first step.  The  application  on real  (measurement)
data  is covered  in  this  paper.  Essential  here  are  a  special  model  data  treatment  and  further  methodological
enhancements  which  allow  us  to  improve  the  robustness  of the  algorithm  and the  accuracy  of  the  solution.
By numerical  experiments,  we  demonstrate  that  SBO  is able  to yield  a solution  close  to  the original  model’s
optimum  while  time  savings  are  again  up to  85% when  compared  to a conventional  direct  optimization
of  the  original  model.

© 2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Numerical simulations play a key role to simulate and predict
processes in the earth’s climate system, ranging from fluid dynam-
ics (in atmosphere and oceans), thermodynamics, radiative transfer
to bio- and biogeochemical interactions, e.g., in marine or other
type of ecosystems. The underlying models are typically formulated
as time-dependent partial differential equations (PDEs) [1–3].

Since many important processes are non-linear, the numerical
effort to simulate the whole or parts of the climate system with a
satisfying accuracy and resolution is quite high. This motivates the
development and use of reduced order models by e.g. coarser dis-
cretizations (in time and/or space) or by parametrizations to reduce
the system size and thus the computational effort [3]. Through
those parametrizations, several additional parameters enter the
system. Many of them are not known beforehand and not directly
measurable.

Growth and mortality rates in marine ecosystem models [4,5],
one of which is taken as a test case for the proposed optimiza-
tion methodology, are examples for such unknown parameters.
Marine ecosystem models describe the transport, interactions and
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biogeochemistry among ocean biota. The modeled processes com-
prise the marine biogeochemical cycles among carbon and the
major nutrients (see, e.g., [4–6]). Marine ecosystem models are of
great importance for understanding the oceanic uptake of carbon
dioxide and for projections of the marine ecosystem’s responses to
climate change.

Generally, before a transient simulation is possible, a marine
ecosystem model has to be calibrated, i.e., the relevant parameters
have to be identified such that the simulated tracer concentra-
tions ideally resembles the actual physical and biogeochemical
processes. Moreover, the ability to forecast future dynamics within
the marine ecosystem crucially depends upon parameterizations
of the desired biogeochemical processes. Thus, since there is no
general consensus on what is the “correct” ecosystem model or
model structure to represent the observed quantities under con-
sideration, an assessment of the different models/parametrizations
highly depends on their validation against the given observed
quantities. Mathematically, this parameter identification can be
classified as a least-squares type optimization or inverse problem
(see, e.g., [7]). This optimization or calibration process requires a
substantial number of typically expensive function and optionally
sensitivity or even Hessian matrix evaluations.

Straightforward attempts by employing the high-fidelity or fine
model under consideration directly in an optimization loop using
conventional optimization techniques are therefore tedious or even
beyond the capability of modern computer power, especially when
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using traditional, gradient-based techniques. The need for an accel-
erated optimization process, which especially becomes important
while handling complex three-dimensional models, becomes crit-
ical.

Surrogate-based optimization (SBO) addresses this issue by
shifting the computational burden from the accurate and expensive
high-fidelity model to its fast but yet reasonably accurate surro-
gate. More specifically, the idea of SBO is to replace the fine model
in the optimization process in the sense of providing predictions
of the model optimum. The surrogate can be created by approxi-
mating sampled fine model data (so-called function-approximation
surrogates,  see [8–10]) or by employing a so-called physics-based
low-fidelity or coarse model, a computationally cheap represen-
tation of the fine one. The latter approach is used in this paper.
Since the accuracy of the coarse model is usually not sufficient to
directly use the latter in lieu of the fine model in an optimization
loop, it is often necessary to use suitable alignment/correction tech-
niques to reduce the misalignment between the coarse and fine
model responses. Popular correction/alignment techniques include
response correction [11] and space mapping [12]. Surrogate-based
optimization is widely and very successfully used in engineering
sciences (see, e.g., [12–14,8]).

As a case study, in order to investigate the applicability of an SBO
methodology to the optimization of marine ecosystem models, we
consider a representative of the class of one-dimensional models.
Clearly, the computational effort in a one-dimensional simulation is
significantly smaller than in the three-dimensional case. However,
the complexity of the response of this specific model is compara-
bly high. Thus, although one-dimensional, this model serves as a
suitable and computationally affordable test example to initially
check the feasibility of the proposed optimization methodology.
These initial experiments are indispensible to gain essential infor-
mation on the principal functionality of the SBO algorithm. Clearly,
to further demonstrate the efficiency of the SBO approach, future
work will have to investigate applicability of this method to other,
also three-dimensional biogeochemical models as well as distinct
measurement data.

Exhaustive optimization runs by using both local, gradient-
based and global, genetic algorithms have been previously
performed for this specific model (see, e.g., [15–17]). However, it
is not the focus of this paper to further assess the quality of the
optimal solution obtained there. For the purpose of this paper we
tentatively accept the previously found minima. Also, we  do not
seek a quantitative interpretation of the solutions obtained by SBO
in the biogeochemical context. Our aim clearly is to demonstrate
the applicability of the proposed methodology to the parameter
optimization of the considered model. More specifically, the focus
is to demonstrate that, by exemplary optimization runs, SBO is able
to yield a solution close to the one obtained by a direct fine model
optimization at low optimization costs.

One straightforward way to introduce a physics-based coarse
model is to reduce the spatial and/or temporal resolution, whereas
the latter is used for the selected model in this paper. Moreover, we
use a multiplicative response correction technique for the alignment
of the coarse and fine model response.

In our previous work [18], a basic formulation of this surrogate
was sufficient to create a reliable approximation, yielding a remark-
ably accurate solution at low computational costs. This was verified
by model generated, attainable data.

In this paper, the application on real data is covered. Utilizing
additionally fine and coarse model sensitivity information ensures
the zero- and first-order consistency conditions between the fine
model and the surrogate, i.e., agreement in function values and
first-order derivatives. Embedding the algorithm in a trust-region
framework [19,20] allows us to further improve the robustness of
the SBO and accuracy of its solution. The trade-offs between the

solution accuracy and the extra computational overhead related to
sensitivity calculation will be addressed. We  show the results of an
exemplary SBO run and compare the solution to those obtained by
a direct fine and coarse model optimization. We  demonstrate that,
on the one hand, a direct optimization of the fine model requires
a substantial number of comparably expensive fine model evalu-
ations. On the other hand, a direct coarse model optimization is
computationally cheap but yields a rather inaccurate solution only.
We subsequently show that the multiplicative response correction
technique substantially helps to improve the coarse model’s accu-
racy while the optimization costs are still comparably low. Using
this approach within SBO, a solution close to the one obtained by
a direct fine model optimization while reducing the optimization
costs down to 15%.

The structure of the paper is as follows: In Section 2.1, we  briefly
highlight the special properties of marine ecosystem models, our
model example, and the corresponding optimization problem. We
introduce the basic idea of surrogate-based optimization in Section
3. The coarse model that we use as a basis to create a surrogate,
is recalled in Section 4. The response correction approach used
to obtain the surrogate is motivated and described in Section 5.
The optimization setup, numerical results and discussion of exem-
plary optimization runs are provided in Sections 6 and 7. Section 8
concludes the paper with a summary and an outlook.

2. Marine ecosystem models

Marine ecosystem models mainly consist of two  parts, namely
the ocean circulation and the biogeochemical model (see, e.g.,
[4,5,21]). The coupling between ocean circulation and the biogeo-
chemical interactions such as photosynthesis is mostly regarded as
a one-way coupling. This means that the influence of the biota on
the circulation (including temperature and maybe salinity distribu-
tion) is assumed to be negligible and thus is often omitted. Velocity
and temperature fields are computed beforehand by an ocean circu-
lation model and only used as forcing data (so-called off-line mode)
for the biogeochemical simulations which significantly reduces the
computational effort [22]. See for example [23] where such an off-
line computation has been thoroughly described and investigated
for an atmospheric model. Our example model (cf. Section 2.1) is
simulated in such an off-line mode.

The model equations consist of a system of coupled advection-
diffusion-reaction equations, where the reaction terms (also called
source minus sink, or sms terms) are given by the biogeochemical
interactions between the biogeochemical tracers. A system of these
transport equations for nt tracers then generally reads

∂yi

∂t
= div(�∇yi) − div(vyi) + qi(y, u), i = 1, . . . , nt (1)

where yi(t, x) : I × � → R, I = [0,  T], denotes the concentration of
tracer i at time t and the spatial location x. If no interactions with the
atmosphere is taken into account, homogeneous Neumann condi-
tions on the boundary � = ∂� for all concentrations are employed,
i.e.,

∂yi

∂n
= n · ∇y = 0 on I × �, i = 1, . . . , nt, (2)

where n denotes the normal vector. The time dependent turbu-
lent mixing/diffusion coefficient �(t, x) : I × � → R  as well as the
velocity vector field v(t, x) : I × � → R

3 with v = (vi)i=1,2,3, both
satisfy the Navier–Stokes equations. Since, here, the parameters
u ∈ R

np , which are subject to the parameter optimization, are scalar
coefficients in the nonlinear biogeochemical coupling terms qi, we
use a boldfaced notation.
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