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Abstract

In order to apply the maximum margin method in arbitrary metric spaces, we suggest to embed the metric space
into a Banach or Hilbert space and to perform linear classification in this space.We propose several embeddings and
recall that an isometric embedding in a Banach space is always possible while an isometric embedding in a Hilbert
space is only possible for certain metric spaces. As a result, we obtain a general maximum margin classification
algorithm for arbitrarymetric spaces (whose solution is approximated by an algorithmofGraepel et al. (International
ConferenceonArtificialNeuralNetworks1999,pp. 304–309)). Interestinglyenough, theembeddingapproach,when
applied to ametric which can be embedded into aHilbert space, yields the support vectormachine (SVM) algorithm,
which emphasizes the fact that its solution depends on the metric and not on the kernel. Furthermore, we give upper
bounds of the capacity of the function classes corresponding to both embeddings in terms of Rademacher averages.
Finally, we compare the capacities of these function classes directly.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Often, the data in real-world problems cannot be expressed naturally as vectors in a Euclidean space.
However, it is common to have a more or less natural notion of distance between data points. This
distance can often be quantified by a semi-metric (i.e. a symmetric non-negative function which satisfies
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the triangle inequality) or, even better, a metric (a semi-metric which is zero only when the two points
are the same).
If the only knowledge available to the statistician is that the data comes from a semi-metric space

(X , d), whereX is the input space andd is the corresponding semi-metric, it is reasonable to assume, for
a classification task, that the class labels are somewhat related to the semi-metric. More precisely, since
one has to make assumptions about the structure of the data (otherwise no generalization is possible), it
is natural to assume that two points that are close (as measured byd) are likely to belong to the same
class, while points that are far awaymay belong to different classes. Another way to express this assumed
relationship between class membership and distances is to say that intra-class distances are on average
smaller than inter-class distances.
Most classical classification algorithms rely, implicitly or explicitly, on such an assumption. On the

other hand, it is not always possible to work directly in the spaceX where the data lies. In particular, some
algorithms require a vector space structure (e.g. linear algorithms) or at least a feature representation (e.g.
decision trees). So, ifX does not have such a structure (e.g. if the elements ofX are DNA sequences of
variable length, or descriptions of the structure of proteins), it is typical to construct a new representation
(usually as vectors) of the data. In this process, the distance between the data, that is the (semi)-metric,
is usually altered. But with the above assumptions on the classification task this change means that
information is lost or at least distorted.
It is thus desirable to avoid any distortion of the (semi)-metric in the process of constructing a new

representation of the data. Or at least, the distortion should be consistent with the assumptions. For
example, a transformation which leaves the small distances unchanged and alters the large distances, is
likely to preserve the relationship between distances and class membership. We later propose a precise
formulation of this type of transformation.
Once the data is mapped into a vector space, there are several possible algorithms that can be used.

However, there is one heuristic which has proven valuable both in terms of computational expense and in
terms of generalization performance, it is the maximum margin heuristic. The idea of maximum margin
algorithms is to look for a linear hyperplane as the decision function which separates the data with
maximummargin, i.e. such that the hyperplane is as far as possible from the data of the two classes. This
is sometimes called the hard margin case. It assumes that the classes are well separated. In general one
can one always deal with the inseparable case by introducing slack variables, which corresponds to the
soft margin case.
Our goal is to apply this heuristic to(X , d), the (semi)-metric input space directly. To do so, we proceed

in two steps: we first embedX into a Banach space (i.e. a normed vector space which is complete with
respect to its norm) and look for a maximum margin hyperplane in this space. The important part being
that the embedding we apply is isometric, that is, all distances are preserved.
We explain how to construct such an embedding and show that the resulting algorithm can be ap-

proximated by the Linear Programming Machine proposed by Graepel et al.[8]. We also propose to use
as a “pre-processing’’ step, a transformation of the metric which has the properties mentioned above
(i.e. leaving the small distances unaltered and affecting the large ones) which may remove the unnec-
essary information contained in large distances and hence give a better result when combined with the
above-mentioned algorithm.
Embedding the data isometrically into a Banach space is convenient since it is possible for any metric

space. But as we will show it has also the disadvantage that the obtained maximum margin algorithm
cannot be directly implemented and has to be approximated. It may thus be desirable that the space into
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