
Journal of Logical and Algebraic Methods in Programming 85 (2016) 173–199

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Resource–usage–aware configuration in software product lines

Damiano Zanardini a,∗, Elvira Albert b, Karina Villela c

a Technical University of Madrid, Spain
b Complutense University of Madrid, Spain
c Fraunhofer IESE Kaiserslautern, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 August 2014
Received in revised form 16 July 2015
Accepted 26 August 2015
Available online 6 September 2015

Deriving concrete products from a product-line infrastructure requires resolving the vari-
ability captured in the product line, based on the company market strategy or requirements 
from specific customers. Selecting the most appropriate set of features for a product is a 
complex task, especially if quality requirements have to be considered. Resource–usage–
aware configuration aims at providing awareness of resource–usage properties of artifacts 
throughout the configuration process. This article envisages several strategies for resource–
usage–aware configuration which feature different performance and efficiency trade-offs. 
The common idea in all strategies is the use of resource–usage estimates obtained by 
an off-the-shelf static resource–usage analyzer as a heuristic for choosing among different 
candidate configurations. We report on a prototype implementation of the most practical 
strategies for resource–usage–aware configuration and apply it on an industrial case study.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

One increasing trend in the market of Software Engineering is the need to develop multiple, similar software products 
instead of just a single individual product. Software Product-Line Engineering (SPLE) [41] offers a solution to this trend based 
on explicitly modeling what is common and what differs among product variants, and on building a reuse infrastructure, 
a so-called product-line infrastructure, that can be instantiated and possibly extended to build the desired similar software 
artifacts (the products).

Deriving concrete products from a product-line infrastructure requires resolving the variability captured in the product 
line according to a company’s market strategy or the requirements from specific customers. Feature models [35,21] have 
been the main approach for capturing the commonality and variability in product lines. The process of product configuration
usually consists in selecting those features that are applicable to the desired product, so that this product can be assembled 
from the product-line assets. One of the most difficult tasks is the translation of market or customer requirements and 
goals into the concrete set of features that best match them. Several aspects affect feature selection for a certain product: 
dependencies and constraints among features, the desired degree of product quality, and economic cost. Moreover, different 
stakeholders are capable of selecting external (visible to the customers and/or marketing people) and internal features 
(necessary to realize external features, but not visible). In product lines with a large number of features, which are very 
common in practice, feature selection becomes an increasingly difficult task, and may result in invalid, inappropriate or 
inefficient configurations.

* Corresponding author.
E-mail address: damiano@fi.upm.es (D. Zanardini).

http://dx.doi.org/10.1016/j.jlamp.2015.08.003
2352-2208/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jlamp.2015.08.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:damiano@fi.upm.es
http://dx.doi.org/10.1016/j.jlamp.2015.08.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2015.08.003&domain=pdf


174 D. Zanardini et al. / Journal of Logical and Algebraic Methods in Programming 85 (2016) 173–199

Table 1
Support for feature selection.

Main characteristic Support type NF concerns Underlying technology

Multi-level staged [22] Interactive Security Specialized FMs
Probabilistic [23] Interactive No Conditional probabilities and legal 

Joint Probability Distributions
Dynamic [39] Automatic No Binding analysis and reconfiguration 

strategy
Multi-step [57,58] Automatic Cost Constraint Satisfaction Problem
Polynomial-time [56] Automatic Yes Multi-dimensional Multi-choice

Knapsack Problem
Fast selection time [28] Automatic Yes Genetic algorithm (repair operator 

and penalty function)
Business concern annotation [51] Automatic Yes Hierarchical Task Network
Multi-view [31,1,32] Interactive No Workflow management tool
Feature-wise and variant-wise 

properties [47]
Mostly automatic Yes Constraint Satisfaction Problem

Domain experts’ judgment [59] Interactive Yes Analytic Hierarchical Process

Several authors have contributed to the research on feature selection (Table 1). We have analyzed the proposed ap-
proaches in terms of the type of support (either interactive or automatic), the non-functional concerns that are taken into 
consideration, and the underlying problem-solving technology.

Concerning Support Type, interactive product configuration uses the rules provided by the feature model to propagate 
configuration choices made by the user [23], whereas automatic product configuration provides a set of configurations 
that satisfy the rules and the user’s requirements and constraints. The selection of features in our resource–usage–aware 
configurator is mainly automatized. However, the user has a central role providing not only information on concerns (e.g., 
memory consumption) and constraints (e.g., that the cost has to be lower than x), but also on the key features of the 
product. Key features are those features which are required by the customer as a crucial part of the desired products, 
similarly to user-selected features included in the input partial configurations of the tool implemented by Sincero et al. [48]. 
If their presence does not infringe any rule, then the configurator will not propose deselecting them in any of the provided 
solutions. On the one hand, this information is essential for the efficiency and effectiveness of a product configurator. On 
the other hand, it provides an interesting balance between automatic and interactive configurations. Tun et al. [53] proposed 
an approach to systematically relate requirements to features that uses three separate feature models (requirements, world 
context and specifications) and respective links between them. Our approach addresses this issue by asking the user for key 
features and quality concerns (requirements and world context), and proposing configurations (specifications) that include 
such key features and optimize the quality concerns.

As regards Non-Functional Concerns, several approaches take into consideration cost constraints, but only few of them 
consider quality concerns [22,56,51,28,47] as we do. There are two crucial aspects in this context: (1) quality-aware con-
figurations require modeling quality variability; and (2) it is necessary to provide support or guidance on how to obtain 
quality indicators. Etxeberria et al. [24] presented a survey on existing approaches for specifying variability in quality at-
tributes. The six approaches (Goal-based model [26], F-SIG [33], COVAMOF [14], Extended Feature Model [12], Definition 
Hierarchy [38], and Bayesian Belief Network [60]) are compared according to the requirements defined by the authors for a 
quality-variability modeling approach. Our resource–usage–aware configurator adopts the Extended Feature Model approach, 
because this approach does not require the learning of additional/new notations by practitioners, which will promote the 
adoption of our approach in practice.

Regarding the third aspect used to compare the approaches in Table 1, namely, the Underlying Technology, our case 
study was built upon the CSP (Constraint-Satisfaction-Problem) solver called Choco Java, because: (1) the mapping of the 
product-configuration problem into CSP [58] is intuitive; and (2) there are translators from CSP into Satisfiability Modulo 
Theories (SMT), which can be adopted to address quality issues of the underlying technology, if required. However, any other 
underlying technology capable of dealing with quality annotation of features (e.g., the one used by Soltani et al. [51]) could 
have been used, which includes visualization and exploration techniques such as the ones proposed in [40].

This paper focuses on obtaining quality indicators of performance for features and/or product configurations that can 
be used to guide product configuration. Performance (a.k.a. resource consumption or resource usage) is a frequently desired 
quality for software artifacts. In our implementation and case study, the quality metrics we use to estimate the degree 
of performance of a product are either the amount of allocated memory (memory consumption) or the number of executed 
instructions. It is important to point out from the beginning that, unlike related work, the presented techniques rely on static
resource–usage analysis, i.e., quality indicators are obtained without actually executing the code and refer to all possible 
inputs (not just to a few specific workloads, as in existing approaches).

We discuss and compare four strategies for resource–usage–aware configuration of software product lines. Many ideas 
behind such strategies are well-known; one of them is actually infeasible and is only presented in order to start the dis-
cussion. However, all these strategies are applied with static analysis in mind, which is something not discussed in existing 
works. The common idea in all strategies is the use of resource–usage estimates as a heuristic for guiding the automatic 
selection of features. The crux is the use of an automated static resource–usage analyzer (e.g., [27,30,6]) providing estimates 



Download English Version:

https://daneshyari.com/en/article/10333448

Download Persian Version:

https://daneshyari.com/article/10333448

Daneshyari.com

https://daneshyari.com/en/article/10333448
https://daneshyari.com/article/10333448
https://daneshyari.com

