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Software product lines (SPLs) facilitate reuse and customization in software development 
by genuinely addressing the concept of variability. Product Line Calculus of Communicating 
Systems (PL-CCS) is a process calculus for behavioral modeling of SPLs, in which 
variability can be explicitly modeled by a binary variant operator. In this paper, we study 
different notions of behavioral equivalence for PL-CCS, based on Park and Milner’s strong 
bisimilarity. These notions enable reasoning about the behavior of SPLs at different levels 
of abstraction. We study the compositionality property of these notions and the mutual 
relationship among them. We further show how the strengths of these notions can be 
consolidated in an equational reasoning method. Finally, we designate the notions of 
behavioral equivalence that are characterized by the property specification language for 
PL-CCS, called multi-valued modal μ-calculus.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Software product line (SPL) engineering has become an established trend in software development, where a family of 
similar software products with minor differences are developed in tandem, instead of developing each specific software 
product separately [1]. SPL engineering benefits from systematic reuse throughout the system life cycle and enables mass 
development and customization of numerous products. Hence, the development cost and the time to market for an SPL is 
substantially decreased, compared to the cumulative development cost and time of the isolated products [2]. To this aim, 
various software engineering activities have to be adapted to cope with the differences among the artifacts for different 
products, called variability. Variability introduces a new complexity dimension and hence, this calls for a genuine treatment 
of variability in different artifacts (such as requirement specification, architectural design, detailed design, and implemen-
tation artifacts). Such a treatment should also allow for a collective analysis of product line behavior (e.g., in testing and 
verification [3,4]) to deal with the inherent complexity of SPLs.

At the highest level of abstraction, an SPL can be specified by a set of features that satisfy the specific needs of a par-
ticular market segment or mission [5]. A feature identifies “a prominent or distinctive unit of requirement which can be 
either a user-visible behavior, aspect, quality, or characteristic of a software system” [6]. Hence, a product can be spec-
ified by a subset of features. To specify an SPL, the features are organized in a hierarchical model, called a feature model. 
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Fig. 1. Our notions of behavioral equivalence for PL-CCS specifications.

It identifies commonalities and differences among the products of the SPL in terms of their features and it identifies suitable 
relations among features, such as optional, mandatory, or mutually exclusive. More concrete specifications capture structural 
and behavioral aspects of an SPL. For instance, the architecture description languages Koala [7] and xADL [8] concentrate 
on structural modeling of SPLs. Modal transition systems (MTSs) [9] and Featured transition systems (FTSs) [10], however, 
concentrate on behavioral modeling (we refer to [11] for an overview of such behavioral models). MTSs capture the behav-
ior of SPLs by defining state transitions as optional or mandatory, while FTSs annotate transitions with a set of features. 
Behavioral models typically come equipped with a product derivation method; e.g., a product, derived from a feature model, 
can project an FTS into a labeled transition system (LTS).

Formal verification techniques provide strong tools to analyze complex systems to guarantee their correctness. Process 
algebra is a formal approach to describe the behavior of communicating concurrent systems in a compositional manner. 
Product Line Calculus of Communicating Systems (PL-CCS) [12,13] is an extension of Milner’s Calculus of Communicating 
Systems (CCS) [14]. PL-CCS extends CCS by adding the binary variant operator ⊕i to model behavioral variability in SPLs. 
More specifically, process term p1 ⊕1 p2, where p1 and p2 are CCS process terms, specifies a family of two alternative 
products, namely p1 or p2 (the index i in ⊕i is used to designate repeated choices that have to be made in the same 
way; when no repetition of indices is present, the indices can be safely ignored). The semantics of a PL-CCS specification 
is given in terms of three different models: the flat semantics, the unfolded semantics, and the configured-transition semantics
[12]. A PL-CCS specification can be turned into a product, specified by a CCS term, by resolving the variability points, 
i.e., the variant operators, by deciding on whether their right or left process is chosen. The flat semantics of a PL-CCS 
term is given in terms of the semantics of all derivable products, denoted by CCS terms. A product family LTS (PF-LTS) is 
an extension of an LTS, where labels and states are paired with configuration vectors that maintain the configuration of 
variants. PF-LTSs provide the unfolded semantics of PL-CCS terms and are derived through a set of structural rules in a 
systematic way. The structural rules given in [12] work on a restricted set of PL-CCS terms in order to be compositional. 
The configured-transition semantics is defined over the unfolded semantics by merging all states that only differ in their 
configuration parts. This provides the most succinct model of PL-CCS terms. Hence, in the developments to come, we 
mostly focus on the configured-transition semantics of PL-CCS. In particular, we provide a set of structural rules that derive 
a configured-transition semantics for PL-CCS terms directly.

Equational reasoning is the cornerstone of the algebraic approach to process theory. To furnish PL-CCS with a proper 
equational theory, we study a number of notions of behavioral equivalence, based on strong bisimilarity [15]. A summary 
of these notions, their properties and the results establishing their relationship is depicted in Fig. 1. We start with a set 
of axioms that we expect to be sound for a model of PL-CCS and define the notion of strict strong bisimilarity, which is a 
natural extension of strong bisimilarity in the SPL setting. Namely, strict strong bisimilarity requires bisimilar product lines 
to behave bisimilarly for all common configurations. This turns out to be a fully compositional notion for PL-CCS, but too 
strong of a notion for some of our intuitive axioms. For example, strict strong bisimilarity rejects p ⊕i q = q ⊕i p, which is 
an intuitive axiom. Subsequently, we introduce a strictly coarser notion, called product line bisimilarity, which does satisfy 
the axioms we defined for PL-CCS. However, this notion is shown to satisfy a weaker compositionality property. Namely, 
it is compositional for a subset of PL-CCS terms, called fully expanded terms. To remedy the latter issue, we show that all 
PL-CCS term can be rewritten into this subset using a sound transformation, thanks to the strong compositional notion of 
strict strong bisimilarity. Since strict strong bisimilarity implies product line bisimilarity this transformation is also sound for 
the latter notion and hence, resolves its compositionality issue. Finally, we introduce configuration bisimilarity, which is an 
alternative yet equivalent notion for product line bisimilarity. The main motivation for introducing configuration bisimilarity 
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