
JID:JLAMP AID:69 /FLA [m3G; v1.160; Prn:28/09/2015; 10:15] P.1 (1-23)

Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in 

Programming
www.elsevier.com/locate/jlamp

Incremental model checking of delta-oriented software 

product lines ✩

Malte Lochau a,∗, Stephan Mennicke b, Hauke Baller b, Lars Ribbeck b

a TU Darmstadt, Real-Time Systems Lab, Germany
b TU Braunschweig, Institute for Programming and Reactive Systems, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 September 2014
Received in revised form 27 August 2015
Accepted 15 September 2015
Available online xxxx

Keywords:
Variability modeling
Operational semantics
Model checking

We propose DeltaCCS, a delta-oriented extension to Milner’s process calculus CCS to 
formalize behavioral variability in software product line specifications in a modular way. In 
DeltaCCS, predefined change directives are applied to core process semantics by overriding 
the CCS term rewriting rule in a determined way. On this basis, behavioral properties 
expressed in the Modal μ-Calculus are verifiable for entire product-line specifications 
both product-by-product as well as in a family-based manner as usual. To overcome 
potential scalability limitations of those existing strategies, we propose a novel approach 
for incremental model checking of product lines. Therefore, variability-aware congruence 
notions and a respective normal form for DeltaCCS specifications allow for a rigorous local 
reasoning on the preservation of behavioral properties after varying CCS specifications. 
We present a prototypical DeltaCCS model checker implementation based on Maude and 
provide evaluation results obtained from various experiments concerning efficiency trade-
offs compared to existing approaches.

© 2015 Published by Elsevier Inc.

1. Introduction

Modern software-intensive systems tend to exhibit more and more diversity, e.g., by means of an ever-growing number 
of configuration options for tailoring those systems to specific customers’ needs. To cope with the additional complexity 
introduced by the inherent variability in software system implementations nowadays, software product-line engineering 
has been proposed as a comprehensive methodology for efficiently developing families of similar software variants upon a 
common core product [1]. A software product line, therefore, explicitly captures the commonality and variability among the 
different members of a product family by means of their supported features. Each feature denotes a configuration option, i.e., 
a variable product characteristic within the problem domain, being relevant for some customer/user. In addition, each feature 
corresponds to composable engineering artifacts within the solution space which allows for an automated assembling of 
respective product variant implementations according to a feature selection made by the customer. This concept enables a 
fine-grained reuse of shared feature artifacts among the different variants throughout all development phases and levels of 

✩ This work was partially supported by the DFG (German Research Foundation) under the Priority Programme SPP1593: Design For Future – Managed 
Software Evolution and under DFG Grant GO-671/6-2.

* Corresponding author.
E-mail addresses: malte.lochau@es.tu-darmstadt.de (M. Lochau), mennicke@ips.cs.tu-bs.de (S. Mennicke), baller@ips.cs.tu-bs.de (H. Baller), 

l.ribbeck@tu-bs.de (L. Ribbeck).

http://dx.doi.org/10.1016/j.jlamp.2015.09.004
2352-2208/© 2015 Published by Elsevier Inc.

http://dx.doi.org/10.1016/j.jlamp.2015.09.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
mailto:malte.lochau@es.tu-darmstadt.de
mailto:mennicke@ips.cs.tu-bs.de
mailto:baller@ips.cs.tu-bs.de
mailto:l.ribbeck@tu-bs.de
http://dx.doi.org/10.1016/j.jlamp.2015.09.004


JID:JLAMP AID:69 /FLA [m3G; v1.160; Prn:28/09/2015; 10:15] P.2 (1-23)

2 M. Lochau et al. / Journal of Logical and Algebraic Methods in Programming ••• (••••) •••–•••

Fig. 1. High-level concept of delta-oriented product-line model checking.

abstraction. Thus, adding explicit variability capabilities to existing modeling and programming languages constitutes a key 
concept of product-line engineering [2].

Since its initial proposal, software product-line technology has found its way into industrial practice in various application 
domains, including mission-critical and even safety-critical systems.1 However, for software product-lines to become fully 
established in practice, not only the development principles, but also the methods for quality assurance such as testing [3]
and formal verification [4] have to be adapted in order to become applicable to families of software products, rather than 
being performed product-by-product which contradicts SPL philosophy. In particular, to also benefit from the concepts of 
systematic artifact reuse and managed variability during quality assurance, the additional reasoning required, e.g., to verify 
correctness properties for all members of a product family has to be conducted in a variability-aware manner [5]. To this 
end, various promising approaches have been proposed in the literature to define core calculi that gather the essence of 
variability in a formal way [6–16]. However, our recently gained experiences in applying those techniques to industrial case 
studies [17,18] from the automation engineering domain have shown that existing approaches may potentially show at least 
one of the following two deficiencies.

• They require a so-called 150% specification, superimposing all possible variants of the product line into one spec-
ification [2]. Thereupon, variability is emulated by adapting existing and/or adding new language constructs, e.g., 
selection/projection of variability parts [9], (guarded) choice among variable parts [13,11,15], and modal refinement of 
variable parts [12,14,7]. Although many advances have been made in this field, modeling and analyzing 150% product-
line representations potentially become intractable for large-scale product lines due to the additional computational 
overhead, e.g., caused by handling variability annotations.

• They concentrate on phenomena arising from structural/syntactical variability [6,2,11,8], whereas the behavioral impact 
of those variations is out of scope. Thus, concepts for a systematic propagation of behavioral properties established for 
one variant also to other variants are missing.

To tackle these open issues, we apply a novel calculus for behavioral variability, called DeltaCCS introduced in a previous 
paper [19] to serve as a basis for modular specification and incremental verification of temporal behavioral properties for 
entire software product lines. DeltaCCS extends Milner’s process calculus CCS [20] by a modular variability concept that 
adopts the principles of delta modeling [8] by separating a core process definition from change directives thereon, so-called 
deltas, that alter the term rewriting semantics of the core process in a determined way.

The overall concept of our delta-oriented product-line model checking framework is illustrated in Fig. 1. Our proposed 
representation of variability consists of collections �1, �2, . . . of CCS deltas. When applied to the abstract syntax represen-
tation of a core process term Pc , a CCS delta alters designated sub-processes of Pc in a determined way to yield arbitrarily 
fine-grained behavioral changes. We make use of a dependency graph representation of CCS terms augmented with CCS 
deltas to provide a rigorous definition and efficient detection mechanism of potential conflicts between pairs �1, �2 of 
CCS Deltas at the syntactic level [8]. At the semantic level, behavioral variability in DeltaCCS is not emulated by an a pri-
ori resolution of variation points as done in 150% specifications [13,15,11], but rather by changing the rewriting of process 
terms on-the-fly by overriding the CCS recursion rule. This variability mechanism enables a precise propagation of arbitrary 
structural variations of core processes onto the semantic level. Thereupon, we define delta-aware congruence [P ]≡ and a 

1 Cf. SPLC Hall of Fame, http :/ /splc .net /fame .html.

http://splc.net/fame.html


Download	English	Version:

https://daneshyari.com/en/article/10333451

Download	Persian	Version:

https://daneshyari.com/article/10333451

Daneshyari.com

https://daneshyari.com/en/article/10333451
https://daneshyari.com/article/10333451
https://daneshyari.com/

