
J. Parallel Distrib. Comput. 74 (2014) 3191–3201

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Towards a performance-portable description of geometric multigrid
algorithms using a domain-specific language
Richard Membarth a,b,∗, Oliver Reiche c, Christian Schmitt c, Frank Hannig c, Jürgen Teich c,
Markus Stürmer d, Harald Köstler d
a German Research Center for Artificial Intelligence, Germany
b Computer Graphics Lab & Intel Visual Computing Institute, Saarland University, Germany
c Hardware/Software Co-Design, Department of Computer Science, University of Erlangen-Nuremberg, Germany
d System Simulation, Department of Computer Science, University of Erlangen-Nuremberg, Germany

h i g h l i g h t s

• DSL extension to handle image pyramids and grid hierarchies.
• DSL extension to model different multigrid cycle types.
• Generated GPU code shows similar performance compared to hand-tuned implementation.
• We apply the algorithm to high dynamic range compression of 2D X-ray images.

a r t i c l e i n f o

Article history:
Received 18 July 2013
Received in revised form
22 April 2014
Accepted 19 August 2014
Available online 28 August 2014

Keywords:
Multigrid
Multiresolution
Image pyramid
Domain-specific language
Stencil codes
Code generation
GPU
CUDA
OpenCL

a b s t r a c t

High Performance Computing (HPC) systems are nowadaysmore andmore heterogeneous. Different pro-
cessor types can be found on a single node including accelerators such as Graphics Processing Units
(GPUs). To cope with the challenge of programming such complex systems, this work presents a domain-
specific approach to automatically generate code tailored to different processor types. Low-level CUDA
andOpenCL code is generated from a high-level description of an algorithm specified in a Domain-Specific
Language (DSL) instead of writing hand-tuned code for GPU accelerators. The DSL is part of the Heteroge-
neous Image Processing Acceleration (HIPAcc) framework and was extended in this work to handle grid
hierarchies in order to model different cycle types. Language constructs are introduced to process and
represent data at different resolutions. This allows to describe image processing algorithms that work on
image pyramids as well as multigrid methods in the stencil domain. By decoupling the algorithm from its
schedule, the proposed approach allows to generate efficient stencil code implementations. Our results
show that similar performance compared to hand-tuned codes can be achieved.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Mapping algorithms in an efficient way to the target hardware
poses challenges for algorithm designers. This is in particular true
for heterogeneous systemshosting accelerators like graphics cards.
While algorithm developers have profound knowledge of the ap-
plication domain, they often lack detailed insight into the under-
lying hardware of accelerators in order to exploit the provided

∗ Corresponding author at: German Research Center for Artificial Intelligence,
Germany.

E-mail addresses: richard.membarth@dfki.de (R. Membarth),
oliver.reiche@cs.fau.de (O. Reiche), christian.schmitt@cs.fau.de (C. Schmitt),
hannig@cs.fau.de (F. Hannig), teich@cs.fau.de (J. Teich),
markus.stuermer@cs.fau.de (M. Stürmer), harald.koestler@cs.fau.de (H. Köstler).

processing power. To tackle this problem, OpenCL,1 a new ind-
ustry-backed standard Application Programming Interface (API)
that inherits many traits from CUDA, was introduced in order to
provide software portability across heterogeneous systems: cor-
rect OpenCL programs will run on any standard-compliant imple-
mentation. OpenCL per se, however, does not address the problem
of performance portability; that is, OpenCL code optimized for one
accelerator device may perform dismally on another, since perfor-
mance may significantly depend on low-level details, such as data
layout and iteration space mapping [11].

In this paper, a different approach is taken by decoupling
algorithms from their schedule in a DSL. This allows to map

1 http://www.khronos.org/opencl.

http://dx.doi.org/10.1016/j.jpdc.2014.08.008
0743-7315/© 2014 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jpdc.2014.08.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.08.008&domain=pdf
mailto:richard.membarth@dfki.de
mailto:oliver.reiche@cs.fau.de
mailto:christian.schmitt@cs.fau.de
mailto:hannig@cs.fau.de
mailto:teich@cs.fau.de
mailto:markus.stuermer@cs.fau.de
mailto:harald.koestler@cs.fau.de
http://www.khronos.org/opencl
http://dx.doi.org/10.1016/j.jpdc.2014.08.008


3192 R. Membarth et al. / J. Parallel Distrib. Comput. 74 (2014) 3191–3201

algorithms efficiently to a target platform. The DSL is part of the
HIPAcc framework [23] that provides also a source-to-source com-
piler to translate not only the high-level algorithm description into
low-level CUDA/OpenCL code, but also to apply transformations
and optimizations on the code. To describe algorithms that work
onmultiple resolutions of the same data, image pyramids are used
in image processing [7] and multigrids for stencil computations
[5,14]. We present in this work a concise syntax for creating such
multiresolution data structures and for processing the data on dif-
ferent resolutions. Kernels described in HIPAcc remain unchanged,
only a schedule for iterating over the grid has to be specified.

We consider image pyramid construction and High Dynamic
Range (HDR) compression of 2D images as example applications.
HDR compression can be done efficiently in the gradient space. For
it, the image has to be transformed to gradient space and back.
While the forward transformation to gradient space is fast by using
simple finite differences, the backward transformation requires
the solution of a Partial Differential Equation (PDE).

Multigrid methods are one of the most efficient numerical
methods to solve large, sparse linear systems arising for example
whendiscretizing elliptic PDEs. Elliptic PDEs are used tomodel var-
ious physical or technical effects in many application fields. One
of the most popular elliptic PDEs is the Poisson equation in order
to model diffusion processes. In this work we consider a simple
multigrid solver in 2D that employs stencil codes for the Poisson
equation and apply it to image processing. In previous work we
developed a suitable parallel multigrid algorithm and provided a
hand-tuned implementation for this task [17]. Our first description
of this multigrid solver in HIPAcc had several drawbacks: images
had to be provided for each level and the (mostly identical) com-
putation had to be described repeatedly for each level [22]. Here,
for concise modeling of multigrid algorithms, we introduce a suit-
able representation for multigrid and multiresolution data sets in
the DSL as well as a concise syntax for describing the operations on
each multigrid level and between different multigrid levels.

The focus of this work is on the concise description of algo-
rithms that operate on different resolutions of the same data:
• We present language constructs in our DSL that allow to de-

scribe image pyramids. Data for pyramids is managed by the
framework and only the data for the finest level has to be pro-
vided. Furthermore, we allow to specify how the pyramid is
traversed: this includes typical traversals for construction of
pyramids in image processing as well as the V-cycle and W-
cycle for multigrid stencil computations.

• We evaluate the implementation of image pyramid construc-
tion and of a multigrid application using our image pyramid
representation. We show that the proposed representation im-
proves productivity significantly. Furthermore, we show that
the description in HIPAcc provides portability across different
architectures and allows to achieve competitive performance
compared to Halide [30] as well as hand-tuned implementa-
tions.

The paper first introduces related work on DSLs and frameworks
for stencil codes. Then, an overview of the HDR compression
application and the used multigrid solver is given. The HIPAcc

framework and its extensions used to model multigrid algorithms
in its DSL is introduced thereafter. The paper concludes with
an evaluation of the domain-specific approach for stencil codes
including productivity, portability, and performance aspects.

2. Related work

In the past, several approaches captured and used knowledge
about the domain of stencil codes and their applications in the form
of domain-specific languages. The idea is to provide abstractions
within the language that are tailored to the domain of stencil-code
engineering.

Liszt [9] and Pochoir [32] are stencil compilers for code written
in a simple domain-specific language. Pochoir compiles to C++with
Cilk++ extensions and fits the optimized stencil code into a generic,
divide-and-conquer template. Pochoir pays particular attention to
cache obliviousness on multi-core workstations. However, both
languages (Liszt and Pochoir) provide only limited support for the
characteristics of the hardware platform.

The hypre library [1] is a collection of high-performance pre-
conditioners and solvers for large sparse linear systems of equa-
tions on massively parallel machines. It offers, for example, a
stencil-based interface for computations on structured or block-
structured grids and also incorporates different multigrid solvers.
DUNE [3] is a modular and generic C++ library for the solution
of partial differential equations on different kinds of grids. It sup-
ports structured or block-structured grids and a variety of algebraic
solvers including multigrid is provided as external modules. Both
libraries, hypre andDUNE, are flexible and can easily be adapted for
stencil applications, but there are neither a domain-specific syntax
nor proper editing anddebugging facilities, and the stencil codehas
to be optimized by setting configuration options by hand. There is
no specialized syntax for the definition ofmultigrid solvers. Setting
parameters such as the number of pre- and postsmoothing steps
and the cycle type is done via functions. Customcycle types or user-
defined restriction and interpolation operators are not supported.
All three frameworks provide no native options for execution on
GPUs.

PATUS (Parallel Auto-Tuned Stencils) [16,8] is a code generation
and auto-tuning framework for stencil computations on shared-
memory architectures. The algorithms and stencils are provided by
the user and strategies can be specified that define parallelization
and optimization.

The parallel Optimized Sparse Kernel Interface (pOSKI) [4] is a
collection of algorithms for operations involving sparse matrices
on uniprocessor and multi-core machines. It includes auto-tuning
at installation- and run-time and is suitable for stencil computa-
tions yielding special sparse matrices.

Physis [21] provides a DSL for stencil computations based on C
with support for GPU accelerators. They hide communication cost
by overlapping boundary exchange with stencil computation.

[15] introduces a small DSL for Jacobi-like iterativemethods. Ef-
ficient code is generated for GPU accelerators by using overlapping
tiles for multiple iterations.

Ypnos [28] and Paraiso [27] provide a functional DSL embedded
in Haskell for structured grid computations with support for GPU
accelerators. Similarly, Halide [30] uses a functional representation
to describe image processing algorithms and stencil codes. The
programmer then specifies a schedule in Halide for a pipeline of
computations separately. This gives the programmer the flexibility
to reuse the same algorithm description for different target
architectures by specifying target-specific schedules.

In [10] a graphical DSL based on UML activity diagrams is pro-
posed tomodelmultigrid algorithms for applications in variational
imaging.

While these frameworks allow to model stencils and to gener-
ate efficient code, the stencils are limited to a single level in most
cases. Halide [30] and the UML activity diagrams [10] are the only
of the aforementioned approaches that allow users to define cus-
tommultigrid algorithms to the best of our knowledge. In [10], the
data-flow between kernels is modeled and multiple levels can be
modeled through a cycle. The implementation of eachUML compo-
nent is provided by the user and, hence, arbitrary computation can
be expressed. Halide, in contrast, allows to define arbitrary control
flow. For multigrid applications, a loop iterating over the different
levels can be used and the results of each level can be stored to an
array.

An alternative approach to code optimization and generation in
stencil-code engineering is the use of the polyhedron model [13].



Download English Version:

https://daneshyari.com/en/article/10333740

Download Persian Version:

https://daneshyari.com/article/10333740

Daneshyari.com

https://daneshyari.com/en/article/10333740
https://daneshyari.com/article/10333740
https://daneshyari.com

