
J. Parallel Distrib. Comput. 74 (2014) 3228–3239

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

A uniform approach for programming distributed heterogeneous
computing systems
Ivan Grasso a,b,∗, Simone Pellegrini a, Biagio Cosenza a, Thomas Fahringer a
a Institute of Computer Science, University of Innsbruck, Austria
b Barcelona Supercomputing Center, Barcelona, Spain

h i g h l i g h t s

• libWater programming model, which extends OpenCL with a simplified interface.
• A lightweight distributed runtime system based on asynchronous command execution.
• A powerful representation that collects and arranges dependencies between commands.
• Dynamic Collective Replacement and Device-Host-Device Copy Removal optimizations.
• A study of the performance of the library on three compute clusters.

a r t i c l e i n f o

Article history:
Received 15 July 2013
Received in revised form
15 April 2014
Accepted 14 August 2014
Available online 26 August 2014

Keywords:
OpenCL
MPI
Distributed computing
Heterogeneous computing
Programming model
Runtime system

a b s t r a c t

Large-scale compute clusters of heterogeneous nodes equipped with multi-core CPUs and GPUs are
getting increasingly popular in the scientific community. However, such systems require a combination
of different programming paradigms making application development very challenging.

In this article we introduce libWater, a library-based extension of the OpenCL programming model
that simplifies the development of heterogeneous distributed applications. libWater consists of a simple
interface, which is a transparent abstraction of the underlying distributed architecture, offering advanced
features such as inter-context and inter-node device synchronization. It provides a runtime system
which tracks dependency information enforced by event synchronization to dynamically build a DAG
of commands, on which we automatically apply two optimizations: collective communication pattern
detection and device-host-device copy removal.

We assess libWater’s performance in three compute clusters available from the Vienna Scientific
Cluster, the Barcelona Supercomputing Center and the University of Innsbruck, demonstrating improved
performance and scaling with different test applications and configurations.

© 2014 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Ease of programming and best performance exploitation are
two conflicting goals while designing programming models and
abstractions for high performance computing (HPC). For instance,
when programming a compute cluster, better performance can be
obtained directly using low level and error prone communication
layers like MPI [27]. Alternatively, high level models like domain
specific languages and frameworks can be employed to simplify

∗ Corresponding author at: Institute of Computer Science, University of
Innsbruck, Austria.

E-mail address: grasso@dps.uibk.ac.at (I. Grasso).

the programmability and portability of the code. This simplifica-
tion however brings also a loss of performance due to the level of
abstraction that is too far away from the underlying hardware.

The recent arise of multi- and many-core CPUs, next to special
purpose hardware and accelerators such as GPUs, made this trade-
off even more challenging. In fact, heterogeneous architectures
require an intricate and complexmix of programmingmodels such
as CUDA, OpenMP and pthreads, in order to handle the diversity of
execution environments and programming models.

The Open Computing Language (OpenCL—[21]) is a partial so-
lution to the problem. It introduces an open standard for general-
purpose parallel programming of heterogeneous systems, which
has been implemented by many vendors such as Adapteva, Altera,
AMD, ARM, Intel, Imagination Technologies, NVIDIA, Qualcomm,
Vivante and Xilinx. An OpenCL program comprises a host program

http://dx.doi.org/10.1016/j.jpdc.2014.08.002
0743-7315/© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.
0/).

http://dx.doi.org/10.1016/j.jpdc.2014.08.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.08.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:grasso@dps.uibk.ac.at
http://dx.doi.org/10.1016/j.jpdc.2014.08.002
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


I. Grasso et al. / J. Parallel Distrib. Comput. 74 (2014) 3228–3239 3229

and a set of kernels intended to run on a compute device. It also
includes a language for kernel programming, and an API for trans-
ferring data between host and device memory and for executing
kernels. Therefore, OpenCL is a big leap forward in order to assure
portability between different hardware, potentially replacing stan-
dards likeOpenMPandCUDA, but it also presents some limitations.
A first problem is that it does not allow interactions between differ-
ent platforms; for example, it is not possible to use event synchro-
nization between devices from different vendors. Secondly, the
semantics of OpenCL host applications is somewhat too verbose, as
it includes different levels of abstraction (platform, device and con-
text).Moreover,whilewriting an application targeting e.g. a cluster
of heterogeneous nodes, we still require an intricatemix of OpenCL
with a communication layer likeMPI. Despite OpenCL can be easily
extended in order to support remote, distributed devices (attempts
in this direction are [22,1,20,11]), the host-device paradigm forces
the use of a centralized communication pattern, which is a strong
limitation for scaling on large-scale compute clusters. In this arti-
cle, we introduce libWater, a library-based extension of the OpenCL
programming paradigm that simplifies the development of appli-
cations for distributed heterogeneous architectures. libWater aims
to improve both productivity and implementation efficiency ad-
dressing all the problems listed above. libWater does not alter the
kernel logic of OpenCL kernels, but replaces the host-side API with
a new, simpler and transparent interface which abstracts the un-
derlying distributed architecture.

The main contributions of this article are:

• The libWater programming model, which extends the OpenCL
standard by replacing the host code with a simplified and
concise interface. It defines a novel device query language (DQL)
for OpenCL device management and discovery, and introduces
new features such as inter- and intra-context synchronization.
• A lightweight distributed runtime environment, which dis-

patches the work between remote devices, based on asyn-
chronous execution of both communications and OpenCL
commands. libWater runtime also collects and arranges depen-
dencies between commands in the form of a powerful repre-
sentation called command DAG.
• Two effective uses of the command DAG in order to im-

prove scalability: (a) a Dynamic Collective Replacement (DCR)
optimization, which identify collective communication pat-
terns and replaces them with MPI collective operations; (b)
a Device-Host-Device Copy Removal (DHDCR), where device-
device communications supersedes device-host-device ones.
Both optimizations overcome the limitation of theOpenCLhost-
device semantic, improving scalability on large-scale compute
clusters.
• A study of the scalability of libWater on two real production

clusters using up to 64 devices. Results showhigh efficiency and
demonstrate the suitability of the presented commandDAG op-
timizations for seven computational application codes. Finally
we demonstrate the suitability of libWater for a heterogeneous
cluster for two codes.

Our approach expands on previous work [13] by adding a new
optimization (the DHDCR, in Section 6), new test cases (Section 6),
new scalability studies on an additional target architecture, the
MinoTauro GPU cluster (Section 7.2) of the Barcelona Supercom-
puting Center and new studies to test the suitability of libWater
to exploit the computational capabilities of a heterogeneous clus-
ter configuration (Section 7.3). With a wider range of applications,
test platforms and optimizations, we show how libWater effec-
tively improves the overall performance and scalability on large-
scale compute clusters while easing the programmability.

The rest of the article is organized as follows. Sections 2 and
3 provide an introduction to OpenCL and libWater programming

model. Section 4 describes the distributed runtime system and the
underlying command DAG representation. The runtime optimiza-
tions are treated in Sections 5 and 6. The experimental evaluation
is presented in Section 7. Sections 8 and 9 discuss relatedwork and
conclusions.

2. The OpenCL programming model

OpenCL is an open industry standard for programming hetero-
geneous systems. The language is designed to support deviceswith
different capabilities such as CPUs, GPUs and accelerators. The plat-
formmodel comprises a host connected to one ormore compute de-
vices. Each device logically consists of one or more compute units
(CUs) which are further divided into processing elements (PEs).
Within a program, the computation is expressed through the use of
special functions called kernels that are, for portability reason, com-
piled at runtime by an OpenCL driver. Interaction with the devices
is possible by means of command-queueswhich are defined within
a particular OpenCL context. Once enqueued, commands – such as
the execution of a kernel or the movement of data between host
and device memory – are managed by the OpenCL driver which
schedules them on the actual physical device.

Commands can be enqueued in a blocking or non-blocking
way. A non-blocking call places a command on a command-queue
and returns immediately to the host, while a blocking-mode call
does not return to the host until the command has been executed
on the device. For synchronization purpose, within a context,
event objects are generated when kernel and memory commands
are submitted to a queue. These objects are used to coordinate
execution between commands and enable decoupling between
host and devices control flows.

Despite being a well designed language that allows the access
to the compute power of heterogeneous devices from a single,
multi-platform source code base, OpenCL has some drawbacks and
limitations. One of the major drawbacks is that, because being
created as a low-level API, a significant amount of boilerplate code
is required even for the execution of simple programs. Developers
have to be familiar with numerous concepts (i.e. platform, device,
context, queue, buffer and kernel) which make the language less
attractive to novice programmers. Another important limitation is
that, although it was designed to address heterogeneous systems,
in case of devices from different vendors, objects belonging to
the context of one vendor are not valid for other vendors. This
limitation clearly becomes a problem when synchronization of
command queues across different contexts is needed.

3. The libWater programming interface

libWater is a C/C++ library-based extension of the OpenCL pro-
grammingparadigm that simplifies the development of distributed
heterogeneous applications. It inherits the main principles from
theOpenCLprogrammingmodel trying to overcome its limitations.
Whilemaintaining the notion of host and device code, libWater ex-
poses a very simple programming interface based on four key con-
cepts: device, buffer, kernel and event. A device represents a compute
device, but differently from the original paradigm this single object
is an abstraction of the OpenCL platform, device, queue and con-
text concepts. Such simplification reduces the number of source
code lines necessary for the initialization of the devices, and thus
avoids the boilerplate configuration code that is usually present in
every OpenCL program. Furthermore, the library is not restricted
to a single node but, taking internally advantage of the message
passing model, it provides access to devices on remote nodes as if
they were locally available.

Since libWater can grant access to a large number of distinct
devices, the selection of a particular one can be cumbersome.



Download English Version:

https://daneshyari.com/en/article/10333743

Download Persian Version:

https://daneshyari.com/article/10333743

Daneshyari.com

https://daneshyari.com/en/article/10333743
https://daneshyari.com/article/10333743
https://daneshyari.com

