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In a graph, a matching cut is an edge cut that is a matching. Matching Cut is the problem 
of deciding whether or not a given graph has a matching cut, which is known to be 
NP-complete. This paper provides a first branching algorithm solving Matching Cut in 
time O ∗(2n/2) = O ∗(1.4143n) for an n-vertex input graph, and shows that Matching Cut

parameterized by the vertex cover number τ (G) can be solved by a single-exponential 
algorithm in time 2τ (G) O (n2). Moreover, the paper also gives a polynomially solvable case 
for Matching Cut which covers previous known results on graphs of maximum degree 
three, line graphs, and claw-free graphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In a graph G = (V , E), a cut is a partition V = A ∪ B of the vertex set into disjoint, nonempty sets A and B , written (A, B). 
The set of all edges in G having an endvertex in A and the other endvertex in B , also written (A, B), is called the edge cut
of the cut (A, B). A matching cut is an edge cut that is a matching. Note that, by our definition, the empty edge cut is a 
matching cut, but a matching whose removal disconnects the graph need not be a matching cut.

In [13], Farley and Proskurowski studied matching cuts in graphs in the context of network applications. Patrignani and 
Pizzonia [28] pointed out an application of matching cuts in graph drawing.

Not every graph has a matching cut; the Matching Cut problem is the problem of deciding whether or not a given graph 
has a matching cut:

Matching Cut

Instance: A graph G = (V , E).
Question: Does G have a matching cut?

This paper deals with algorithms solving the Matching Cut problem.

Previous results and related work. Graphs admitting a matching cut were first discussed by Graham in [16] under the 
name decomposable graphs. The first complexity results for Matching Cut have been obtained by Chvátal, who proved in [8]
that Matching Cut is NP-complete, even when restricted to graphs of maximum degree four, and polynomially solvable for 
graphs of maximum degree three. In fact, Chvátal’s reduction works even for K1,4-free graphs of maximum degree four. 

✩ A preliminary version of this paper appeared as an extended abstract in the proceedings of CIAC 2015 ([20]).
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Being not aware of Chvátal’s result, Patrignani and Pizzonia [28] gave another NP-completeness proof for Matching Cut. 
Later, by modifying Chvátal’s reduction, Le and Randerath [23] proved that Matching Cut remains NP-complete for bipartite 
graphs with one color class consisting only of vertices of degree three and the other color class consisting only of vertices 
of degree four. Using a completely different reduction, Bonsma proved the NP-hardness of Matching Cut for planar graphs 
of maximum degree four and for planar graphs of girth five [2].

Besides the case of maximum degree three mentioned above, it has been shown that Matching Cut can be solved in 
polynomial time for line graphs1 and for graphs without induced cycles of length at least five (Moshi [26]), for claw-free 
graphs (Bonsma [2]), for cographs and graphs of bounded tree-width or clique-width (Bonsma [2]),2 and for graphs of 
diameter two (Borowiecki and Jesse-Józefczyk [3]).

A closely related problem to Matching Cut is that of deciding if a given graph admits a stable cutset. Here, a stable cutset
in a graph G = (V , E) is a stable set S ⊆ V such that G − S is disconnected. It can be seen that, for graphs G with minimum 
degree at least two, G has a matching cut if and only if the line graph L(G) admits a stable cutset. For information on 
applications and algorithmic results on stable cutsets we refer to [4–7,9,19,22–24,29].

Our contributions. First, we provide a new polynomially solvable case for Matching Cut, namely for graphs without in-
duced K1,4 and K1,4 + e (the graph obtained from K1,4 by adding an edge). Thus, extending and unifying Chvátal’s results 
for graphs of maximum degree three, Moshi’s results for line graphs, and Bonsma’s results for claw-free graphs. Second, we 
provide, for the first time, an exact branching algorithm for Matching Cut that has time complexity O ∗(2n/2).3 Third, we 
initiate the study of matching cuts from the viewpoint of parameterized complexity. We show that Matching Cut is fixed-
parameter tractable when parameterized by the vertex cover number τ (G). Much stronger, we establish a single-exponential 
algorithm running in time 2τ (G) O (n2).

Notation and terminology. Let G = (V , E) be a graph with vertex set V (G) = V and edge set E(G) = E . We assume that a 
(input) graph has n vertices and m edges. A stable set (a clique) in G is a set of pairwise non-adjacent (adjacent) vertices. 
The neighborhood of a vertex v in G , denoted by NG (v), is the set of all vertices in G adjacent to v; if the context is clear, 
we simply write N(v). Set deg(v) = |N(v)|, the degree of the vertex v . For a subset W ⊆ V , G[W ] is the subgraph of G
induced by W , and G − W stands for G[V \ W ]. We write NW (v) for N(v) ∩ W and call the vertices in N(v) ∩ W the 
W -neighbors of v . A vertex cover of G is a subset C ⊆ V such that every edge of G has at least one endvertex in C , i.e., V \ C
is a stable set in G . The vertex cover number of G , denoted by τ (G), is the smallest size of a vertex cover of G .

The complete graph and the cycle on n vertices is denoted by Kn and Cn , respectively; K3 is also called a triangle. The 
tree on t + 1 vertices with t leaves is denoted by K1,t ; K1,3 is also called a claw. The graph obtained from K1,t by adding a 
new edge is denoted by K1,t + e.

When an algorithm branches on the current instance of size n into subproblems of sizes at most n − t1, n − t2, . . . , n − tr , 
then (t1, t2, . . . , tr) is called the branching vector of this branching, and the unique positive root of xn − xn−t1 − xn−t2 − · · · −
xn−tr = 0, written τ (t1, t2, . . . , tr), is called its branching number. The running time of the branching algorithm is O ∗(αn), 
where α = maxi αi and the maximum is taken over all branching rules. Furthermore for every i, αi is the branching number 
of branching rule i. We refer to [15] for more details on exact branching algorithms.

Parameterized complexity deals with NP-hard problems whose instances come equipped with an additional integer pa-
rameter k. The objective is to design algorithms whose running time is f (k) · poly(n) for some computable function f . 
Problems admitting such algorithms are called fixed-parameter tractable. See [11,14,27] for more information.

The paper is organized as follows. In Section 2 we show that Matching Cut can be solved in polynomial time for graphs 
without induced K1,4 and K1,4 + e. In Section 3 we describe our branching algorithm and point out that Matching Cut

does not admit a subexponential time algorithm, unless the exponential time hypothesis fails. In Section 4 we describe a 
single-exponential algorithm for Matching Cut when parameterized by the vertex cover number.

2. A polynomially solvable case of Matching Cut

In this section we will unify the known polynomially solvable cases for Matching Cut on graphs of maximum degree 
three, on line graphs, and on claw-free graphs, by proving the following theorem.

Theorem 1. There is an algorithm solving Matching Cut for (K1,4, K1,4 + e)-free graphs in time O (mn).

Proof. Let G be a (K1,4, K1,4 + e)-free graph. Since forests and cycles of length at least 4 have matching cuts, we may 
assume that G properly contains a cycle. Let C be a shortest cycle in G .

If C is of length at least 5, then every vertex v of G − V (C) has at most one neighbor in C (otherwise vC[vi, v j]v or 
vC[v j, vi]v would be a shorter cycle than C , where vi and v j are two neighbors of v on C and C[vi, v j] and C[v j, vi] are 

1 The line graph of a graph G is the graph whose vertices correspond to the edges of G , and two vertices are adjacent iff the corresponding edges have 
a common endvertex in G .

2 We note that Matching Cut can be expressed in MSOL; see also [2].
3 We use the O ∗ notation which suppresses polynomial factors.
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