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In this paper we study structure and representations of cyclic automata. Corresponding to 
Green’s equivalences in semigroup theory, we introduce three binary relations say L, R
and H on cyclic automata. An automaton is said to be strict if L is an equivalence on the 
set of states. Some properties of these relations are established for giving characterizations 
of three subclasses of strict automata. Also, we provide representations of strict automata 
by representing the states as vectors and describing the state transitions in terms of matrix 
operations. These results generalize and extend Ito’s representations of strongly connected 
automata.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The study of structural and algebraic automata theory was initiated in the 1960s. There are two essential problems in 
this field, the computation of functions preserving the operations (also known as homomorphisms) of finite automata and 
the construction of congruences on finite automata. They are important for the decomposition of complex automata and for 
the specification of the relationships between monoids and automata.

Z. Bavel [3] studied homomorphisms of finite automata systematically. He shows that every automaton can be decom-
posed into some primaries (also known as maximal cyclic subautomata), and then he characterizes the homomorphisms of 
an automaton by characterizing the homomorphisms of the primaries. Hence, many statements concerning homomorphisms 
may be reduced to corresponding statements concerning primaries and many proofs may be simplified with the use of pri-
maries. Much literature has been devoted to characterizations of homomorphisms and isomorphisms of various automata. 
We refer the reader to [1,2] and [4–13] for further information.

In the 1970s, M. Ito [15–18] promoted the development of the algebraic automata theory. He defines a partial operation 
+ on a group with zero G0 and constructs a matrix system over (G0, +, ·). The usual matrix multiplication is a closure 
on this system, although the sum of two elements in G0 does not always make sense. In addition, some properties of 
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vector spaces are still valid. Based on these properties, Ito provides a representation of a strongly connected automaton 
by representing the states as vectors (in a vector system constructed from the automorphism group) and describing the 
state transitions in terms of matrix operations. Using this representation, he constructs all the finite strongly connected 
automata (up to isomorphism) whose automorphism groups are isomorphic to a given G . Thus, he specifies the relationships 
between finite groups and finite strongly connected automata. However, it is still unclear whether a similar relationship 
holds between finite monoids and general finite automata.

Ito’s thoughts of representations on strongly connected automata seem to come from the representation theory in al-
gebra. Representation theory is a branch of mathematics that studies abstract algebraic structures by representing their 
elements as linear transformations of vector spaces and describing its algebraic operations in terms of matrix addition and 
matrix multiplication. Representation theory is a powerful problem-solving techniques, since it reduces problems in abstract 
algebra to problems in linear algebra, a subject that is well understood.

Following Bavel and Ito, we study in this paper the structures and representations of cyclic automata by investigating 
equivalences on them. We list in Section 2 some notions, notation and basic results as preliminaries. In Section 3 we in-
troduce and study three binary relations, say L, R and H, on the set of states of a cyclic automaton. Some properties on 
these relations are established. Then we focus on so called strict automata, a subclass of cyclic automata, in which L is an 
equivalence. It is shown that an automaton is strongly connected if and only if it is strict and its monoid of endomorphisms 
is a group. In Sections 4 and 5 we characterize, using the relations R and H, the strict automata whose monoids of endo-
morphisms are semilattices and Clifford monoids, respectively. As a generalization of group-matrix type automata (cf. [19]), 
we introduce and study monoid-matrix type automata in Section 6. Firstly, define a partial operation + on a monoid with 
zero M0 and construct a matrix system over (M0, +, ·). Then we show that the usual matrix multiplication and some prop-
erties of vector spaces are still valid. It is proved that if M is a finite monoid and M = (M̂n, X, δ�) a monoid-matrix type 
automaton of order n, then M can be embedded into the endomorphism monoid E(M), where M̂n is the set of vectors in an 
n-dimensional vector space constructed from M and � is a mapping from X into (M ∪ {0})n×n such that δ�(v, x) = v�(x)
for every v ∈ M̂n and x ∈ X . Further, we provide in Section 7 representations of strict automata which in [24] is used for 
specifying the relationships between finite Clifford monoids and finite strict automata whose monoids of endomorphisms 
are Clifford monoids.

2. Preliminaries

An automaton A = (A, X, δ) consists of the following data:

(i) A is a finite nonempty set of states;
(ii) X is a finite nonempty input alphabet;

(iii) δ is a function, called the state transition function, from A × X into A.

Let X∗ be the set of all finite words over X . Note that X∗ forms, with respect to concatenation, the free monoid generated 
by X in which the empty word ε is the identity element. The state transition function can be extended to a function from 
A × X∗ to A by

(i) δ(a, ε) = a for any a ∈ A;
(ii) δ(a, xu) = δ(δ(a, x), u) for any a ∈ A, x ∈ X and u ∈ X∗ .

Then for every w ∈ X∗ , the mapping

δw : A → A,a �→ δ(a, w),

is well-defined.
Let A = (A, X, δ) be an automaton. For any a ∈ A, let 〈a〉 denote the set {δ(a, w) | w ∈ X∗} and let A(a) = (〈a〉, X, δ〈a〉×X ), 

where δ〈a〉×X is the restriction of δ on the set 〈a〉 × X , denote the subautomaton of A generated by a. A state a in A is 
called a generator (cf. [20]) of A if A(a) = A. The set of all generators of A is denoted by Gen(A). An automaton A is said to 
be cyclic if Gen(A) 	= ∅. In particular, A is said to be strongly connected if Gen(A) = A. That is to say, for any pair of states 
a, b ∈ A, there exists a word w ∈ X∗ such that δ(a, w) = b. In addition, the order ≤ on A, defined by

a ≤ b ⇔ 〈a〉 ⊆ 〈b〉,
is a partial order.

We say an equivalence T on the set of states A is a congruence on A if (a, b) ∈ T implies (δ(a, w), δ(b, w)) ∈ T for any 
a, b ∈ A and any w ∈ X∗ .

Let A = (A, X, δ) and B = (B, X, γ ) be automata. A mapping f from A into B is called a homomorphism from A into B
if f (δ(a, x)) = γ ( f (a), x) holds for any a ∈ A and x ∈ X . If a homomorphism f is bijective, then f is called an isomorphism. 
If there exists an isomorphism from A onto B, then A and B are said to be isomorphic to each other and this is denoted by 
A ∼= B. Moreover, a homomorphism (an isomorphism) from A into itself is called an endomorphism (an automorphism) of A. 
It is clear that the set E(A)(G(A)) of all endomorphisms (automorphisms) of A forms a monoid (group) with respect to the 
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