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The metric dimension of a connected graph G is the minimum number of vertices in 
a subset S of the vertex set of G such that all other vertices are uniquely determined 
by their distances to the vertices in S . We define an extended metric dimension for 
graphs with some edges missing, which corresponds to the minimum number of vertices 
in a subset S such that all other vertices have unique distances to S in all minimally 
connected graphs that result from completing the original graph. This extension allows 
for incomplete knowledge of the underlying graph in applications such as localizing the 
source of infection. We give precise values for the extended metric dimension when the 
original graph’s disconnected components are trees, cycles, grids, complete graphs, and we 
provide general upper bounds on this number in terms of the boundary of the graph.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let G be a finite, simple, connected graph with |V (G)| = n vertices. For a subset R ⊆ V (G) with |R| = r, and a vertex 
v ∈ V (G), define d(v, R) to be the r-dimensional vector whose i-th coordinate d(v, R)i is the length of the shortest path 
between v and the i-th vertex of R . We call a set R ⊆ V (G) a resolving set if for any pair of vertices v, w ∈ V (G), d(v, R) �=
d(w, R). Clearly, the entire vertex set V (G) is always a resolving set, and so is R = V (G) \ {v} for every vertex v . The metric 
dimension β(G) is then the smallest cardinality of a resolving set. We have the trivial inequalities 1 ≤ β(G) ≤ n − 1, with 
the lower bound attained for a path, and the upper bound for the complete graph. The metric dimension was introduced 
by Slater [10] in the mid-1970s, and by Harary and Melter [7]. As a start, Slater [10] determined the metric dimension 
of trees. Two decades later, Khuller, Raghavachari and Rosenfeld [9] gave a linear-time algorithm for computing the metric 
dimension of a tree, and characterized the graphs with metric dimensions 1 and 2. The metric dimension for many graph 
classes is known, including random graphs [1], and its calculation has also been extensively studied from a computational 
complexity point of view (see [5,6,9]).

In this paper1 we extend the concept of metric dimension to graphs with some edges missing: suppose we are given 
a finite, simple graph F = (V , E) with |V | = n consisting of k ≥ 2 connected components, denoted by Ci , for i = 1, . . .k. 
Denote the class H(F ) to be the class of all possible connected graphs that can be constructed from F by adding k − 1
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Fig. 1. An example of a partially observed network with two components. A missing edge is the one connecting the two components. In (a) distances 
of a vertex u from the set O in the graph H1 are the same as the distances of a vertex v to the set O in the graph H2: dH1 (u, o1) = 4 = dH2 (v, o1), 
dH1 (u, o2) = 2 = dH2 (v, o2) and dH1 (u, o3) = 2 = dH2 (v, o3). Without knowing if the true graph is H1 or H2 the source cannot be correctly identified, as it 
can be either vertex u or v . In (b), two more vertices are included in set O . It can be checked that O is now a minimum cardinality extended resolving 
set. Now, the distances of the vertices u and v to the set O are different, as dH1 (u, o4) = 3 �= 1 = dH2 (v, o4) and dH1 (u, o5) = 3 �= 1 = dH2 (v, o5). Hence, 
the vertices u and v can be distinguished and the source can be unambiguously localized, even if it is not known exactly how the two components are 
connected.

edges. For a graph H1 ∈ H(F ), a vertex u ∈ V and a set O  ⊆ V , denote by dH1 (u, O ) the distance vector of u to the set 
O in the graph H1, that is, (dH1 (u, O ))i is the length of the shortest path between u and the i-th vertex of O in the 
graph H1. A set of vertices O  ⊆ V (F ) such that for any two different vertices u and v , and any two graphs H1, H2 ∈ H(F ), 
dH1 (u, O ) �= dH2 (v, O ) is called an extended resolving set of F . The cardinality of a smallest extended resolving set of a 
graph F , denoted by γ (F ), is the extended metric dimension of F . Note that maxHi∈H(F ) β(Hi) ≤ γ (F ) ≤ n − 1.

Motivation. The introduction of resolving sets by Slater [10] was motivated by the application of placement of a minimum 
number of sonar detectors in a network, while Khuller, Raghavachari and Rosenfeld [9] were interested in finding the 
minimum number of landmarks needed for robot navigation on a graph. Recently, the problem of finding the minimum 
number of agents whose infection times need to be observed in order to identify the first infected agent for a simplified 
diffusion model was cast as finding the metric dimension of the graph [11]. Similarly, to identify a rumor source in a 
network based on the times when the nodes first heard the rumor, observed nodes should form a resolving set.

However, in many practical applications, the network topology is not completely known, and only locally can the net-
work be completely observed. For example, one wants to uniquely identify a source in a network possibly far away, but 
information about the presence/non-presence of edges is missing. More precisely, we want to find a subset of the vertices, 
from which we can identify a source uniquely, even when we only know that the graph has some edge connecting two (pos-
sibly far) components, and without knowing which edge it is. Hence, just by observing the distances between the nodes, 
and without knowing exactly how local components are connected, we wish to always unambiguously identify the source. 
An illustrative example is shown in Fig. 1.

We model incomplete network knowledge by assuming that the graph of interest is disconnected, with k components 
and k − 1 unobserved edges connecting the components, and we consequently introduce the concept of extended metric 
dimension. We are aware that our model is restrictive and is only a first step towards incomplete knowledge of the graph 
topology. A more general model, allowing the addition of more than k − 1 edges, and not necessarily only a spanning tree 
between the original components, is object of further research.

A similar, but different, approach was recently undertaken by [4]: their way of modeling incomplete information is the 
following: they call a set S doubly-resolving, if for any two vertices u, v there exist x, y ∈ S such that d(u, x) − d(u, y) �=
d(v, x) − d(v, y), and their goal is to find a doubly-resolving set of minimal cardinality. The motivation for the work [4] also 
stems from the application of source localization, but with the difference that the original activation time of the source is 
not known, while the graph structure is fully known.

Notation. For a connected graph G , i, j ∈ V (G), denote an i − j-path to be a sequence of all different vertices v0 = i,
v1, . . . , v� = j, such that for i = 0, . . . , � − 1, {vi, vi+1} ∈ E(G). Let L (Ci) denote the set of all leaves of component Ci . 
Let K (Ci) be the set of vertices of component Ci that have degree greater than two, and that are connected by paths of 
degree-two vertices to one or more leaves in Ci (when considering Ci as a separate graph and ignoring edges to other 
components). For a given vertex c ∈ K (Ci), call the leaves connected to c via such degree-two-paths to be the associated 
leaves of c. Note that for a tree that is not a path each leaf is associated to exactly one vertex c ∈ K (Ci). For a fixed 
component Ci of F , denote by Si a minimum cardinality resolving set of Ci (so that β(Ci) = |Si |). The M × N-grid with 
M, N ≥ 2, is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being 
in the range 0, . . . , M − 1, y-coordinates in the range 0, . . . , N − 1, and two vertices are connected by an edge whenever the 
corresponding points are at Euclidean distance 1. The four vertices of degree two are called corner vertices.

For a connected graph G , a vertex v is a boundary vertex of u if dG(w, u) ≤ dG(v, u), for all w that are neighbors of 
v [3]. A vertex v is a boundary vertex of G if it is a boundary vertex of some vertex of G . The set of all boundary vertices 
of a vertex u is denoted as ∂(u). The boundary of a vertex set S ⊆ V is the set of vertices in G that are boundary vertices 
for some vertex u ∈ S . The boundary of graph G , ∂(G), is the set of all boundary vertices of G . It is well known that the 
boundary is a resolving set, see [8]. For example, the boundary of a tree is the set of its leaves, whereas the boundary of a 
grid is the set of its 4 corner vertices, and the boundary of a cycle is the whole vertex set [8].
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