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The positivity problem is a foundational decision problem. It asks whether a dynamical 
system would keep the observing expression (over its states) positive. It has a derivative—
the ultimate positivity problem, which allows that the observing expression is non-positive 
within a bounded time interval. For the two problems, most existing results are established 
on discrete-time dynamical systems, specifically on linear recurrence sequences. In this 
paper, however, we study the ultimate positivity problem for a class of continuous-time 
dynamical systems, called solvable systems. They subsume linear systems. For the general 
solvable system, we present a sufficient condition for inferring ultimate positivity. The 
validity of the condition can be algorithmically checked. Once it is valid, we can further 
find the time threshold, after which the observing expression would be always positive. 
On the other hand, we show that the ultimate positivity problem is decidable for some 
special classes of solvable systems, such as linear systems of dimension up to five.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Skolem–Pisot problem is a famous decision problem in theoretical computer science. Generally speaking, it asks whether 
a (discrete-time or continuous-time) dynamical system would make the observing expression f (x) (over its states x) reach 
zero. The positivity problem is its complement, which asks whether a dynamical system would keep the observing ex-
pression f (x) positive. The two decision problems have received increasing interests in the last decade, because they are 
closely related to many newly-emerging fields, such as program verification [27,30], probabilistic model checking [2], and quan-
tum automata [7]. The two decision problems are significant but intrinsically intractable. Hence most existing progress is
established either on approximate decision problems or on restricted system models.

In the past, Skolem–Pisot problem was usually interpreted over linear recurrence sequences (LRSs for short) 〈x(τ )〉τ∈Z+—a 
class of discrete-time dynamical systems. In this setting, the observing expression f (x) is simply the state x of the given 
LRS. A profound result was Skolem–Mahler–Lech theorem [25,16,14], stating that the set of zero states {τ ∈ Z+ | x(τ ) = 0}
in a LRS is the union of finitely many periodic sets and a finite set. Later Hansel reproved this classic theorem by p-adic 
method [10]. In 1980s, Mignotte et al. and Vereshchagin independently showed that Skolem–Pisot problem is decidable for 
LRSs of order up to four [17,28]. A comprehensive survey on these works was given in [9], in which the authors further 
attacked the decidability for fifth order LRSs. But the proof of the concluding result (see Proposition 4.7 of [9]) seemed to 
have a serious gap (as reported in [19]). Thus Skolem–Pisot problem is still open for LRSs of order five or higher.
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In the meantime, progress on the positivity problem of LRSs is fairly slow, since the pilot study in 1970s [23]. In 
2006, Halava et al. showed the decidability of the positivity for second order LRSs [8]. Three years later, Laohakosol and 
Tangsupphathawat showed that for third order LRSs [13]. The decidability for high order LRSs was no doubt very hard. 
A breakthrough was the recent paper by Ouaknine and Worrell [19]. The authors applied powerful number-theoretic re-
sults to decide the positivity for LRSs of order up to five, and indicated that the decidability for sixth order LRSs would 
make major progress in Diophantine approximation. Besides, they also concerned the positivity for simple LRSs, in which 
characteristic polynomials have no repeated root, and concerned the ultimate positivity problem, which allows only a finite 
number of non-positive states. They decided the positivity for simple LRSs of order up to nine [18], and decided the ultimate 
positivity for simple LRSs in polynomial time [20]. For complicated LRSs with variable coefficients, the positivity problem 
becomes more intractable. The known decidability results are established for some special third order LRSs [12].

Recently, Bell et al. first considered the continuous Skolem–Pisot problem [3], in which Skolem–Pisot problem was in-
terpreted over linear systems—a class of continuous-time dynamical systems. They showed that Skolem–Pisot problem is 
decidable for linear systems of dimension up to two and for some special classes of linear systems. But, in general, the 
continuous Skolem–Pisot problem has been proven to be NP-hard in [3] (c.f. the discrete version was reported in [4]), and 
its decidability is still unknown at the time of writing. Naturally the positivity and the ultimate positivity problems are 
worthy of concern for continuous-time dynamical systems. As far as we know, however, existing methods and results are 
rare on them. An indirect way for inferring positivity is the method of barriers generation. It first computes a superset of 
reachable states x of the given dynamical system, which is defined by a barrier; and then asserts the positivity holds if 
the whole superset satisfies the desired property f (x) > 0. For instance, utilizing convex optimization techniques, Prajna 
constructed barriers between the reachable states and the unsafe states for nonlinear dynamical systems [21]. However, the 
generated barriers are usually polynomial, whereas characterizing the set of reachable states of most dynamical systems 
(including linear systems) needs more expressibility than semi-algebraic sets. Hence the barrier-based proof is not always 
sharp enough to infer positivity for continuous-time dynamical systems.

In this paper, we study the ultimate positivity problem for a class of continuous-time dynamical systems, called solvable 
systems (a superset of linear systems). We first give the formal description of solvable systems, whose solutions are shown 
to have a closed form. Then we group all terms in the solution into different growth classes. The coefficients of terms in the 
greatest growth class build up the so-called leading component, whose sign would dominate the signs of other components 
when the time variable is sufficiently large, i.e. the time variable is beyond certain time threshold T . On the basis of it, 
we present some sufficient conditions for inferring and refuting ultimate positivity, which are dependent on the infimum 
of the leading component. The validity of these conditions can be checked by algebraic algorithms. Hence these conditions 
are computable. Once the ultimate positivity is inferred by our condition, the time threshold T can further be found. We 
reduce this task to the upper bound of real roots of multi-exponential polynomials (a class of univariate real functions to 
be defined later on).

The above method works for the general solvable system, and it is enough to infer or refute ultimate positivity for most 
instances. However it fails to establish the decidability result. For decidability, we have to restrict our focus to some special 
classes of solvable systems. Technically, we propose restrictions on the structures of components in the solution of the 
solvable system, saying the leading component having at most three distinct arguments. Then it is ensured by [18] that the 
leading component reaches its infimum only at finitely many periodic sets and a finite set. For the former, we are required 
to further consider other components to yield an entire result. For the latter, after certain computable time threshold, we 
can bound the leading component away from its infimum by an inverse polynomial. Thus we can prove that for simple 
solvable systems (to be explained later on), the sign of the leading component would dominate those of other components 
when the time variable is sufficiently large. Thereby we successfully decide the ultimate positivity problem for those special 
classes of solvable systems, such as linear systems of dimension up to five.

Organization In Section 2 we review some basic notions and results from number theory. In Section 3 we introduce solvable 
systems and the positivity problems. Then we present computable conditions for inferring and refuting ultimate positivity 
in Section 4, and show the decidability for some special classes in Section 5. Finally we draw a conclusion in Section 6.

2. Preliminaries

Here we briefly review some number-theoretic notions and results for analyzing the positivity problems afterwards.

Definition 2.1. The number α is algebraic, denoted by α ∈ A, if there exists a nonzero irreducible polynomial ρ(x) ∈ Z[x]
(named the minimal polynomial) such that ρ(α) = 0; otherwise it is transcendental.

Every algebraic number is entirely determined by its minimal polynomial confined in a finite area in the complex plane. 
Let Ralg be short for the real algebraic number field R ∩ A. For instance, an eigenvalue λ of a rational matrix is algebraic, 
and both its real part μ =�(λ) and its imaginary part ν =�(λ) are real algebraic.

Definition 2.2. The numbers ν1, . . . , νn are linearly independent if no linear relation 
∑n

i=1 ziνi = 0 with integer coefficients zi , 
not all zero, holds among them; otherwise they are linearly dependent.
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