Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

The pessimistic diagnosabilities of some general regular graphs

Rong-Xia Hao*, Mei-Mei Gu, Yan-Quan Feng

Department of Mathematics, Beijing Jiaotong University, 100044, PR China

ARTICLE INFO

Article history: Received 18 June 2015 Received in revised form 9 September 2015 Accepted 21 October 2015 Available online 23 October 2015 Communicated by S.-Y. Hsieh

Keywords: Pessimistic diagnosability PMC model Regular graph Interconnection network

ABSTRACT

The pessimistic diagnosis strategy is a classic strategy based on the PMC model. A system is t/t-diagnosable if, provided the number of faulty processors is bounded by t, all faulty processors can be isolated within a set of size at most t with at most one fault-free node mistaken as a faulty one. The pessimistic diagnosability of a system G, denoted by $t_p(G)$, is the maximal number of faulty processors so that the system G is t/t-diagnosable. In this paper, we study the pessimistic diagnosabilities of some general k-regular k-connected graphs G_n . The main result $t_p(G_n) = 2k - 2 - g$ under some conditions is obtained, where g is the maximum number of common neighbors between any two adjacent vertices in G_n . As applications of the main result, every pessimistic diagnosability of many famous networks including some known results, such as the alternating group networks AN_n , the k-ary n-cubes Q_n^k , the star graphs S_n , the matching composition networks $G(G_1, G_2; M)$ and the alternating group graphs AG_n , are obtained.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A system or a network is modeled as an undirected graph with each processor represented as a node and each communication link represented as an undirected edge. In a multiprocessor system, some of these nodes may be faulty when the system is put into use. As the number of nodes in a multiprocessor system increases, identifying faulty nodes is crucial for reliable computing. The process of identifying faulty processors is called the diagnosis of the system. When a faulty node is identified, it is replaced by a fault-free node to maintain the system's reliability. An interconnection network's diagnosability is an important measure of its self-diagnostic capability. A system is said to be *t*-diagnosable if all faulty units can be identified provided the number of faulty units present does not exceed *t*. The diagnosability of a system is the maximal number of faulty processors that the system can guarantee to diagnose.

A number of models has been proposed for diagnosing faulty processors in a network. Preparata et al. [21] first introduced a graph theoretical model, the so-called *PMC model* (i.e., Preparata, Metze and Chien's model), for system level diagnosis in multiprocessor systems. In this model, it is assumed that a processor can test the faulty or fault-free status of another processor. It is assumed that if a vertex is fault-free it should always give correct and reliable test results and if a vertex is faulty then its test result may be correct or incorrect. The pessimistic diagnosis strategy is a classic strategy based on the PMC model in which isolates all faulty vertices within a set containing at most one fault-free vertex. A system is t/t-diagnosable, provided the number of faulty processors is bounded by t, all faulty processors can be isolated within a set

* Corresponding author. E-mail addresses: rxhao@bjtu.edu.cn (R.-X. Hao), gum2012@bjtu.edu.cn (M.-M. Gu), yqfeng@bjtu.edu.cn (Y.-Q. Feng).

http://dx.doi.org/10.1016/j.tcs.2015.10.025 0304-3975/© 2015 Elsevier B.V. All rights reserved.

of size at most t with at most one fault-free node mistaken as a faulty one. The *pessimistic diagnosability* of a system G, denoted by $t_p(G)$, is the maximal number of faulty processors so that the system G is t/t-diagnosable. The pessimistic diagnosabilities of many interconnection networks have been explored, as examples to see [3-7,19,23,24,28,29,32] etc. The pessimistic diagnosability of alternating group graphs AG_n and the hypercube-like networks (BC graphs) were obtained by Tsai in [25] and [26], respectively. Let G be a graph, $w \in V(G)$ is called a *common neighbor* of u and v in G if w is adjacent to both u and w in G.

In this paper, we study the pessimistic diagnosabilities of some general k-regular k-connected graphs G_n under the PMC model by applying the method used in [25]. The main result $t_p(G_n) = 2k - 2 - g$ under some conditions is obtained, where g is the maximum number of common neighbors between any two adjacent vertices in G_n . As applications and corollaries of the main result, every pessimistic diagnosability of many famous networks, such as the alternating group networks AN_n , the k-ary *n*-cubes Q_n^k , the star graphs S_n , the matching composition networks $G(G_1, G_2; M)$ and the alternating group graphs AG_n , are obtained.

The rest of this paper is organized as follows. Section 2 introduces some definitions and notations. Section 3 is devoted to the pessimistic diagnosability of the regular graph G_n , the main result is derived. Section 4 concentrates on the applications to some famous networks. Section 5 concludes the paper.

2. Preliminaries

In this section, we give some terminologies and notations of combinatorial network theory. For terminologies and notations not defined here, the reader is referred to [2].

2.1. Terminologies and notations

We use a graph, denoted by G = (V(G), E(G)), to represent an interconnection network, where V(G) is the vertex set of *G*; E(G) is the edge set of *G*. Here, a vertex $u \in V(G)$ represents a processor and an edge $(u, v) \in E(G)$ represents a link between vertices *u* and *v*. For a vertex $u \in V(G)$, we use the symbol $N_G(u)$ to denote a set of vertices in *G* adjacent to *u*. For a vertex set $U \subseteq V(G)$, let $N_G(U) = \bigcup_{v \in U} N_G(v) - U$ and G[U] be the subgraph of *G* induced by *U*. If $|N_G(u)| = k$ for any vertex in *G*, then *G* is *k*-regular. Let *G* be a connected graph, if G - S is still connected for any $S \subseteq V(G)$ with $|S| \leq k - 1$, then *G* is *k*-connected. For any two vertices *u* and *v* in *G*, let cn(G; u, v) denote the number of vertices who are the neighbors of both *u* and *v*, that is, $cn(G; u, v) = |N_G(u) \cap N_G(v)|$. Let $cn(G) = \max\{cn(G; u, v) : u, v \in V(G)\}$. Let |V(G)| be the size of vertex set and |E(G)| be the size of edge set. A graph which contains no loops and no parallel edges is simple Throughout this paper, all graphs are finite, undirected simple graphs.

Let $[n] = \{0, 1, 2, ..., n - 1\}$ (not the general notation $[n] = \{1, 2, ..., n\}$). For a finite group *A* and a subset *S* of *A* such that $1 \notin S$ and $S = S^{-1}$ (where 1 is the identity element of *A*), the *Cayley graph* Cay(*A*; *S*) on *A* with respect to *S* is defined to have vertex set *A* and edge set $\{(g, gs)|g \in A, s \in S\}$.

Definition 1. Let $n, s, r \ge 0$ and $p, m \ge 1$ be integers. An *n*-th regular graph, say G_n , can be recursively constructed as follows:

- (1) 1-th regular graph, say G_1 , is a *r*-connected *r*-regular simple graph with order *p*.
- (2) For n ≥ 2, n-th regular graph, say G_n, is a regular graph which consists of m_n copies of (n − 1)-th regular graph G_{n-1}, say G⁰_{n-1}, G¹_{n-1}, ..., G^{m_n-1}_{n-1}. Each vertex v ∈ Gⁱ_{n-1} has s (1 ≤ s < m_n) neighbors, called extra neighbors of v, outside Gⁱ_{n-1} for every i ∈ [m_n]. Let the set of extra neighbors of v ∈ V(Gⁱ_{n-1}) for any i ∈ [n] be N_e(v) such that 0 ≤ |N_e(v)| ≤ 1.
 (3) G_n is [(n − 1)s + r]-regular and [(n − 1)s + r]-connected.

It is easily verified that the order of G_n is $N = m_2 m_3 \dots m_n p$.

2.2. Some interconnection networks regarded as special regular graphs G_n

2.2.1. The alternating group graph AG_n

Jwo et al. [18] introduced the alternating group graph as an interconnection network topology for computing systems.

Definition 2. Let A_n be the alternating group of degree n with $n \ge 3$. Set $S = \{(1 \ 2 \ i), (1 \ i \ 2) \mid 3 \le i \le n\}$. The alternating group graph, denoted by AG_n , is defined as the Cayley graph $AG_n = \text{Cay}(A_n, S)$.

 AG_3 is a triangle. It is clear that AG_n is a (2n - 4)-connected and (2n - 4)-regular graph with n!/2 vertices. AG_n can be divided into n sub-alternating group graphs $AG_n^0, AG_n^1, \ldots, AG_n^{n-1}$. For each $i \in [n], AG_n^i$ is isomorphic to AG_{n-1} . For each vertex $v \in AG_n^i$, v has exactly two neighbors that are not contained in AG_n^i , which are called the *extra neighbors* of v.

Lemma 1. (See [15].) The extra neighbors of every vertex of AG_n are in different subgraphs AG_n^i for $n \ge 4$. For any two different vertices $u, v, cn(AG_n : u, v) = 1$ if u and v are adjacent; otherwise, $cn(AG_n : u, v) \le 2$.

Download English Version:

https://daneshyari.com/en/article/10333876

Download Persian Version:

https://daneshyari.com/article/10333876

Daneshyari.com