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Fault tolerance is especially important for interconnection networks, since the growing size 
of networks increases their vulnerability to component failures. A classical measure for 
the fault tolerance of a network in the case of vertex failures is its connectivity. Given 
a network based on a graph G and a positive integer h, the Rh-connectivity of G is the 
minimum cardinality of a set of vertices in G , if any, whose deletion disconnects G , and 
the minimum degree of every connected component is at least h. This paper investigates 
the Rh-connectivity (h = 1, 2) of the hierarchical cubic network HCNn (n ≥ 2), and shows 
that κ1(HCNn) = 2n, κ2(HCNn) = 4n − 4, respectively. Furthermore, the paper establishes 
the conditional diagnosability of HCNn under the PMC diagnostic model.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Many large-scale multiprocessor or multicomputer systems take interconnection networks as underlying topologies. The 
scale of some supercomputers has been amplifying dramatically recently. For example, the Tianhe-2 contains 3,120,000 
nodes and the Cray Titan contains 560,640 nodes [38]. As the number of processors in such systems increases, processor 
failure is inevitable. To ensure the stable running of the systems, we must find out the faulty processors to repair or replace 
them. System-level diagnosis, as a powerful tool, has been widely used in VLSI as well as wire and wireless networks. The 
field of system-level diagnosis has evolved from the pioneering work of Preparata, Metze, and Chien [19], who proposed 
the first diagnostic model, known as PMC model. The PMC model assumed that each node can test its neighboring nodes, 
and the test results are “faulty” or “fault-free”. Under this model, the diagnosability of an interconnection network is the 
maximum number of faulty nodes in the system that can be guaranteed to be located. To grant more accurate measurement 
of diagnosability for a large-scale processing system, Lai et al. [16] introduced the conditional diagnosability of a system 
under the PMC model, by assuming that the probability that all adjacent nodes of one node are faulty simultaneously is very 
small. That is to say, conditional diagnosability is the diagnosability under the condition that all adjacent nodes of any node 
cannot be faulty simultaneously. They further showed that the conditional diagnosability of Q n is 4(n −2) +1 for n ≥ 5. Since 
then, the conditional diagnosabilities of some variants of hypercube, such as matching composition networks [26], folded 
hypercubes [36], k-ary n-cubes [5], shuffle cubes [25], augmented cubes [3], balanced hypercubes [27], and dual cubes [29], 
have been established. As for more complex networks, such as DCC linear congruential graphs [10], (n, k)-arrangement 
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graphs [18], alternating group networks [17], and star graphs [4], their conditional diagnosabilities under the PMC model 
have also been derived. Some generalizations [20,31] and some unified approaches [9,15,37] to measure the conditional 
diagnosability have been explored. Recently, Tsai [21], and Teng et al. [22] have made progress in design of diagnosis 
algorithm under the PMC model.

This paper focuses on the conditional diagnosability of the hierarchical cubic networks, proposed by Ghose and Desai [14]
as a hypercube-based topology while preserving its attractive features [2,7,11,12,14,32,33].

The rest of this paper is organized as follows. In Section 2, we recall some definitions, notations and the structure of 
the n-dimensional hierarchical cubic network HCNn . Section 3 is devoted to the fault resiliency of HCNn . Based on the fault 
tolerance of HCNn , we derive its Rh-connectivities, i.e., κ1(HCNn) = 2n and κ2(HCNn) = 4n − 4. Section 4 concentrates on 
the conditional diagnosability of HCNn under the PMC model. Section 5 concludes the paper.

2. Preliminaries

2.1. Terminologies and notations

We use a graph G = G(V , E) to represent an interconnection network, where a vertex u ∈ V represents a processor 
and an edge (u, v) ∈ E represents a link between vertices u and v . If at least one end of an edge is faulty, the edge is 
said to be faulty; otherwise, the edge is said to be fault-free. For a vertex u in G , N(u) denotes the set of all neighbors 
of u, i.e., N(u) = {v | (u, v) ∈ E}. For a vertex subset S ∈ V (G), we denote N(S) = ⋃

u∈S N(u) \ S the open neighborhood 
of S and N[S] = N(S) ∪ S the closed neighborhood of S . For brevity, N({u, v}) and N[{u, v}] are written as N(u, v) and 
N[u, v], respectively. The subgraph of G induced by S , denoted by G[S], is the graph with the vertex-set S and the edge-set 
{(u, v) | (u, v) ∈ E(G), u, v ∈ S}. We use d(u, v) to denote the distance between u and v , the length of a shortest path 
between u and v in G , and we also denote d(u, G) = min{d(u, v) | v ∈ G}. The diameter of G is defined as the maximum 
distance between any two vertices in G . A path in a graph is a sequence of distinct vertices so that there is an edge joining 
consecutive vertices, with the length being the number of vertices in the sequence minus 1. A cycle is a path of length 
at least three where there is an edge joining the first and last vertices. A path (or cycle) of length k is called a k-path 
(or k-cycle).

For any subset F ⊂ V , the notation G − F denotes a graph obtained by removing all vertices in F from G and deleting 
those edges with at least one end-vertex in F , simultaneously. If G − F is disconnected, F is called a separating set. A sep-
arating set F is called a k-separating set if |F | = k. The maximal connected subgraphs of G − F are called components. The 
connectivity κ(G) of G is defined as the minimum k for which G has a k-separating set; otherwise κ(G) is defined as n − 1
if G = Kn . A graph G is called to be k-connected if κ(G) ≥ k.

The traditional connectivity κ(G) of a network G = G(V , E) is an important parameter to measure the fault tolerance of 
the network. However, there is an obvious deficiency in the definition of κ(G), and it is tacitly assumed that all vertices 
adjacent to a vertex can potentially fail at the same time. To compensate for this shortcoming, it is natural to generalize 
the classical connectivity by introducing some conditions or restrictions on the separating set S and/or the components 
of G − S [24]. To simplify the computation of κh

R (G), Wan and Zhang [23] proposed a kind of conditional connectivity by 
placing some requirements on the components of G − F only. Given a network based on a graph G and a positive integer 
h, the Rh-connectivity of G , denoted by κh(G), is the minimum cardinality of a set of vertices in G , if any, whose deletion 
disconnects G , and every remaining component has minimum degree at least h. For the star graph Sn , Wan and Zhang [23]
determined κ2(Sn) = 6(n − 3) for n ≥ 4. For the (n, k)-star graphs Sn,k [35], Yang et al. [30] proved that κ1(Sn,k) = n +k − 3, 
and κ2(Sn,k) = n + 2k − 5 for 2 ≤ k ≤ n − 2. For the Cayley graph �n(�) generated by 2-trees, Cheng et al. [8] obtained that 
κ1(�n(�)) = 4n − 11 and κ2(�n(�)) = 6n − 18. These results generalize the corresponding parts of the popular alternating 
group graphs investigated by Zhang et al. [34].

2.2. Hierarchical cubic network HCNn

Network reliability is one of the major factors in designing the topology of an interconnection network. Because of its 
elegant topological properties and the ability to emulate a wide variety of other frequently used networks, the hypercube 
has been one of the most popular interconnection networks for parallel computer/communication systems. However, when 
dealing with the parallel computers of very large scale, the port limitation due to the technology greatly affects the use 
of hypercube. The hierarchical cubic network, first proposed by Ghose and Desai [14], has almost half as many edges as a 
comparable hypercube. In other words, the degree of n-dimensional hierarchical cubic network HCNn is almost half of that 
of a hypercube of the same size. Also importantly, the diameter of HCNn is smaller than that of a hypercube of the same 
size [33].

An optimal shortest path routing algorithm in HCNn is described by Yun and Park [32,33]. A node-to-set routing al-
gorithm in HCNn is first proposed by Chiang and Chen [7] and then improved by Fu et al. [12]. Recently, Bossard and 
Kaneko [2] have explored the node-to-set disjoint routing algorithm. Fu and Chen [11,13] investigate hamiltonicity and fault 
tolerant pancyclicity of HCNn . Bossard [1] proposes an efficient algorithm generating in an HCNn a decycling set of at most 
22n−1 − (22n−2/n + �2n−1/n	) nodes, which will protect from deadlocks, livelocks and starvations in resource allocation 
issues.
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