Note

Convex p-partitions of bipartite graphs

Luciano N. Grippo ${ }^{\text {a }}$, Martín Matamala ${ }^{\text {b,c }}$, Martín D. Safe ${ }^{\text {a }}$, Maya J. Stein ${ }^{\text {c }}$
a Instituto de Ciencias, Universidad Nacional de General Sarmiento, Los Polvorines, Buenos Aires, Argentina
${ }^{\text {b }}$ Departamento de Ingeniería Matemática, Universidad de Chile, Santiago, Chile
${ }^{\text {c }}$ Centro de Modelamiento Matemático (CNRS-UMI 2807), Universidad de Chile, Santiago, Chile

ARTICLE INFO

Article history:

Received 21 April 2015
Received in revised form 16 September 2015
Accepted 10 November 2015
Available online 11 November 2015
Communicated by G. Ausiello
Keywords:
Bipartite graph
Convex partition
Graph convexity
Geodesic convexity

Abstract

A set of vertices X of a graph G is convex if no shortest path between two vertices in X contains a vertex outside X. We prove that for fixed $p \geq 1$, all partitions of the vertex set of a bipartite graph into p convex sets can be found in polynomial time.

(C) 2015 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph $G=(V, E)$, a set X of vertices is called convex if $G[X]$, the graph induced by X, contains all shortest paths between any two of its vertices. All graphs here are undirected and simple. The notion probably first appeared in [8], see also [10], and later became also known as geodesic convexity, or d-convexity, in order to distinguish it from different notions of convexity in graphs and other combinatorial structures (see [7] for an early overview). The book [11] gives an up-to-date survey of results on convexity in graphs.

One of the approaches to convexity in graphs comes from the viewpoint of computational complexity. Clearly, by computing the distances between all pairs, one can decide in polynomial time if a given set of vertices is convex. To determine the size of a largest convex set not covering the whole graph, however, is an NP-complete problem, even for bipartite graphs, albeit linear for cographs [5]. The same phenomenon occurs (NP-completeness even for bipartite graphs, but linearity for cographs) if we wish to determine related invariants such as the hull number and the geodetic number of a graph [1,4,6].

We focus here on the notion of a convex p-partition of a graph, that is, a partition of the vertex set into p convex sets. For instance, any graph on n vertices containing a matching of size m has a convex ($n-m$)-partition, and trivially, any graph has a convex 1-partition. Deciding whether a graph has a convex p-partition, for fixed $p \geq 2$, is NP-complete for arbitrary graphs, and linear time solvable for cographs [2]. Also, any connected chordal graph has at least one convex p-partition for each $p \geq 1$ [2].

In view of the above described panorama, it was conjectured in [11] that also for bipartite graphs, it should be NPcomplete to decide whether they have a convex p-partition. We show that, for any fixed $p \geq 1$, this is not the case. More

[^0]precisely, we prove that for $p \geq 1$, all convex p-partitions of a bipartite graph can be enumerated in polynomial time. This extends a recent result of Glantz and Meyerhenke [9], who prove the same for the case $p=2$. They also showed that all convex 2-partitions of a planar graph can be found in polynomial time.

2. Bipartite graphs with convex \boldsymbol{p}-partitions

We start by reproving the result for bipartite graphs from [9] in a slightly different way. At the same time, this will serve as a base for the general case. We denote the distance between two vertices u and v in a graph G by $d_{G}(u, v)$, defined as the length of a shortest path between u and v. It is known that for a given u, the set of all distances $d(u, v)$, for $v \in V$, can be computed in linear time [12].

Lemma 1. Given a convex set C in a connected bipartite graph G, and an edge $u v$ with $u \in C, v \notin C$ we have that $d_{G}\left(u^{\prime}, u\right)<d_{G}\left(u^{\prime}, v\right)$, for each $u^{\prime} \in C$.

Proof. Suppose otherwise. Observe that since G is bipartite, $d_{G}\left(u^{\prime}, u\right) \neq d_{G}\left(u^{\prime}, v\right)$, and thus we may assume $d_{G}\left(u^{\prime}, u\right)>$ $d_{G}\left(u^{\prime}, v\right)$. Then there is a shortest path P from u^{\prime} to v not containing u. Extending P to u through the edge $v u$, gives a shortest path from u^{\prime} to u, a contradiction, as u and u^{\prime} lie in the convex set C, but $v \notin C$.

Let $e=u v$ be an edge of G and denote by $X_{u v}$ the set of vertices that are closer to u than to v. If G is a connected bipartite graph, then V is the disjoint union $X_{u v} \cup X_{v u}$. From Lemma 1 we get the following corollaries.

Corollary 2. Let $u v$ be an edge of a connected bipartite graph G. If C is a convex set containing u and not containing v, then $C \subseteq X_{u v}$.
Corollary 3. Let $G=(V, E)$ be a connected bipartite graph, with a partition of V into convex sets X_{1}, X_{2}. Let $u v \in E$, with $u \in X_{1}$ and $v \in X_{2}$. Then $X_{1} \subseteq X_{u v}$ and $X_{2} \subseteq X_{v u}$ which, as $V=X_{u v} \cup X_{v u}$, implies that $X_{1}=X_{u v}$ and $X_{2}=X_{v u}$.

From the previous corollary it is direct that there are at most $|E|$ convex 2-partitions and, as a consequence, we can enumerate all convex 2-partitions in polynomial time.

Proposition 4. We can enumerate in polynomial time all convex 2-partitions of a connected bipartite graph.
We now prove that for fixed $p \geq 3$, we can enumerate in polynomial time all convex p-partitions of a connected bipartite graph. In order to do so, we extend the idea present in Corollary 3.

We write $[p]$ for the set $\{1, \ldots, p\}$. For a set F of edges, let $V(F)$ denote the set of all endvertices of edges of F.
Given a convex p-partition $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ of a graph $G=(V, E)$, we call a pair (F, ϕ) an \mathcal{X}-skeleton, if $F \subseteq E$ and $\phi: V(F) \rightarrow[p]$ satisfy the following:

- all edges of F go between distinct parts of \mathcal{X};
- if there is at least one edge in E between X_{i} and X_{j}, then there is exactly one edge of F between X_{i} and X_{j};
- $\phi(v)=i$ if and only if $v \in X_{i}$.

Note that the first two conditions might be equivalently expressed by saying that after contracting the sets X_{i} and deleting all remaining edges that are not in F, we are left with a (simple) graph $H_{(F, \phi)}$ whose edges represent the edges of G that cross the partition. The last condition says ϕ assigns the same color to all vertices of $V(F)$ that become identified in $H_{(F, \phi)}$.

Note that for a connected graph G the second condition implies that $V(F) \cap X_{j} \neq \emptyset$, for each $j \in[p]$. Then, the third condition implies that ϕ is a surjective function.

Given a set of edges F we say that a function $\phi: V(F) \rightarrow[p]$ is a p-coloring of F if it is surjective and for each $v w \in F$, $\phi(v) \neq \phi(w)$.

We shall prove that given a graph $G=(V, E), F \subseteq E$ and ϕ a p-coloring of F, we can decide in linear time whether (F, ϕ) is the \mathcal{X}-skeleton of a convex p-partition $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ of G.

To this end, we use the following two criteria which follow from Corollary 2 and the definition of a convex set, respectively.

1. For each $i \in[p]$ and for each edge $v w \in F$ with $\phi(w)=i$, if a vertex $u \in X_{v w}$ then $u \notin X_{i}$.
2. For each $i \in[p]$, for any three distinct vertices u, v, w with $w \in V(F)$ and $d_{G}(u, w)=d_{G}(u, v)+d_{G}(v, w)$, if $v \notin X_{i}$ and $w \in X_{i}$, then $u \notin X_{i}$.

The algorithm described in Algorithm 1 has three steps. It starts with considering for each part of the convex partition the whole set of vertices. In a second step, it eliminates from each part X_{i} those vertices indicated by the first criterion. For each $v w \in F$ we can compute in linear time the set $X_{v w}$, and thus, we can check in constant time whether $u \in X_{v w}$.

https://daneshyari.com/en/article/10333884

Download Persian Version:
https://daneshyari.com/article/10333884

Daneshyari.com

[^0]: E-mail addresses: lgrippo@ungs.edu.ar (L.N. Grippo), mmatamal@dim.uchile.cl (M. Matamala), msafe@ungs.edu.ar (M.D. Safe), mstein@dim.uchile.cl (M.J. Stein).
 http://dx.doi.org/10.1016/j.tcs.2015.11.014
 0304-3975/© 2015 Elsevier B.V. All rights reserved.

