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When elementary quantum systems, such as polarized 
photons, are used to transmit digital information, the un-
certainty principle gives rise to novel cryptographic phe-
nomena unachievable with traditional transmission media, 
e.g. a communications channel on which it is impossible 
in principle to eavesdrop without a high probability of dis-
turbing the transmission in such a way as to be detected. 
Such a quantum channel can be used in conjunction with 
ordinary insecure classical channels to distribute random 
key information between two users with the assurance 
that it remains unknown to anyone else, even when the 
users share no secret information initially. We also present 
a protocol for coin-tossing by exchange of quantum mes-
sages, which is secure against traditional kinds of cheating, 
even by an opponent with unlimited computing power, but 
ironically can be subverted by use of a still subtler quan-
tum phenomenon, the Einstein–Podolsky–Rosen paradox.

I. Introduction

Conventional cryptosystems such as ENIGMA, DES, or 
even RSA, are based on a mixture of guesswork and math-
ematics. Information theory shows that traditional secret-
key cryptosystems cannot be totally secure unless the key, 
used once only, is at least as long as the cleartext. On the 
other hand, the theory of computational complexity is not 
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yet well enough understood to prove the computational se-
curity of public-key cryptosystems.

In this paper we use a radically different foundation 
for cryptography, viz. the uncertainty principle of quantum 
physics. In conventional information theory and cryptog-
raphy, it is taken for granted that digital communications 
in principle can always be passively monitored or copied, 
even by someone ignorant of their meaning. However, 
when information is encoded in non-orthogonal quantum 
states, such as single photons with polarization directions 
0, 45, 90, and 135 degrees, one obtains a communica-
tions channel whose transmissions in principle cannot be 
read or copied reliably by an eavesdropper ignorant of cer-
tain key information used in forming the transmission. The 
eavesdropper cannot even gain partial information about 
such a transmission without altering it in a random and 
uncontrollable way likely to be detected by the channel’s 
legitimate users.

Quantum coding was first described in [W], along with 
two applications: making money that is in principle im-
possible to counterfeit, and multiplexing two or three mes-
sages in such a way that reading one destroys the others. 
More recently [BBBW], quantum coding has been used in 
conjunction with public key cryptographic techniques to 
yield several schemes for unforgeable subway tokens. Here 
we show that quantum coding by itself achieves one of the 
main advantages of public key cryptography by permitting 
secure distribution of random key information between 
parties who share no secret information initially, provided 
the parties have access, besides the quantum channel, to 
an ordinary channel susceptible to passive but not active 
eavesdropping. Even in the presence of active eavesdrop-
ping, the two parties can still distribute key securely if 
they share some secret information initially, provided the 
eavesdropping is not so active as to suppress communi-
cations completely. We also present a protocol for coin 
tossing by exchange of quantum messages. Except where 
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otherwise noted the protocols are provably secure even 
against an opponent with superior technology and unlim-
ited computing power, barring fundamental violations of 
accepted physical laws.

Offsetting these advantages is the practical disadvan-
tage that quantum transmissions are necessarily very weak 
and cannot be amplified in transit. Moreover, quantum 
cryptography does not provide digital signatures, or ap-
plications such as certified mail or the ability to settle 
disputes before a judge.

II. Essential properties of polarized photons

Polarized light can be produced by sending an ordinary 
light beam through a polarizing apparatus such as a Po-
laroid filter or calcite crystal; the beam’s polarization axis 
is determined by the orientation of the polarizing appara-
tus in which the beam originates. Generating single polar-
ized photons is also possible, in principle by picking them 
out of a polarized beam, and in practice by a variation of 
an experiment [AGR] of Aspect et al.

Although polarization is a continuous variable, the un-
certainty principle forbids measurements on any single 
photon from revealing more than one bit about its po-
larization. For example, if a light beam with polarization 
axis α is sent into a filter oriented at angle β , the indi-
vidual photons behave dichotomously and probabilistically, 
being transmitted with probability cos2(α − β) and ab-
sorbed with the complementary probability sin2(α − β). 
The photons behave deterministically only when the two 
axes are parallel (certain transmission) or perpendicular 
(certain absorption).

If the two axes are not perpendicular, so that some pho-
tons are transmitted, one might hope to learn additional 
information about α by measuring the transmitted pho-
tons again with a polarizer oriented at some third angle; 
but this is to no avail, because the transmitted photons, 
in passing through the β polarizer, emerge with exactly β
polarization, having lost all memory of their previous po-
larization α.

Another way one might hope to learn more than one 
bit from a single photon would be not to measure it di-
rectly, but rather somehow amplify it into a clone of iden-
tically polarized photons, then perform measurements on 
these; but this hope is also vain, because such cloning can 
be shown to be inconsistent with the foundations of quan-
tum mechanics [WZ].

Formally, quantum mechanics represents the internal 
state of a quantum system (e.g. the polarization of a pho-
ton) as a vector ψ of unit length in a linear space H
over the field of complex numbers (Hilbert space). The in-
ner product of two vectors 〈φ | ψ〉 is defined as 

∑
j φ

∗
j ψ j , 

where ∗ indicates complex conjugation. The dimensionality 
of the Hilbert space depends on the system, being larger 
(or even infinite) for more complicated systems. Each phys-
ical measurement M that might be performed on the sys-
tem corresponds to a resolution of its Hilbert space into or-
thogonal subspaces, one for each possible outcome of the 
measurement. The number of possible outcomes is thus 
limited to the dimensionality d of the Hilbert space, the 

most complete measurements being those that resolve the 
Hilbert space into d 1-dimensional subspaces.

Let Mk represent the projection operator onto the kth
subspace of measurement M , so that the identity oper-
ator on H can be represented as a sum of projections: 
I = M1 + M2 + . . . . When a system in state ψ is subjected 
to measurement M , its behavior is in general probabilistic: 
outcome k occurs with a probability equal to |Mkψ |2, the 
square of the length of the state vector’s projection into 
subspace Mk . After the measurement, the system is left in 
a new state Mkψ/|Mkψ |, which is the normalized unit vec-
tor in the direction of the old state vector’s projection into 
subspace Mk . The measurement thus has a deterministic 
outcome, and leaves the state vector unmodified, only in 
the exceptional case that the initial state vector happens 
to lie entirely in one of the orthogonal subspaces charac-
terizing the measurement.

The Hilbert space for a single polarized photon is 
2-dimensional; thus the state of a photon may be com-
pletely described as a linear combination of, for example, 
the two unit vectors r1 = (1, 0) and r2 = (0, 1), repre-
senting respectively horizontal and vertical polarization. In 
particular, a photon polarized at angle α to the horizontal 
is described by the state vector (cosα, sinα). When sub-
jected to a measurement of vertical-vs.-horizontal polariza-
tion, such a photon in effect chooses to become horizontal 
with probability cos2 α and vertical with probability sin2 α. 
The two orthogonal vectors r1 and r2 thus exemplify the 
resolution of a 2-dimensional Hilbert space into 2 orthogo-
nal 1-dimensional subspaces; henceforth r1 and r2 will be 
said to comprise the ‘rectilinear’ basis for the Hilbert space.

An alternative basis for the same Hilbert space is pro-
vided by the two ‘diagonal’ basis vectors d1 =
(0.707, 0.707), representing a 45-degree photon, and d2 =
(0.707, −0.707), representing a 135-degree photon. Two 
bases (e.g. rectilinear and diagonal) are said to be ‘con-
jugate’ [W] if each vector of one basis has equal-length 
projections onto all vectors of the other basis: this means 
that a system prepared in a specific state of one basis will 
behave entirely randomly, and lose all its stored informa-
tion, when subjected to a measurement corresponding to 
the other basis. Owing to the complex nature of its coef-
ficients, the two-dimensional Hilbert space also admits a 
third basis conjugate to both the rectilinear and diagonal 
bases, comprising the two so-called ‘circular’ polarizations 
c1 = (0.707, 0.707i) and c2 = (0.707i, 0.707); but the rec-
tilinear and diagonal bases are all that will be needed for 
the cryptographic applications in this paper.

The Hilbert space for a compound system is constructed 
by taking the tensor product of the Hilbert spaces of its 
components; thus the state of a pair of photons is char-
acterized by a unit vector in the 4-dimensional Hilbert 
space spanned by the orthogonal basis vectors r1r1, r1r2, 
r2r1, and r2r2. This formalism entails that the state of a 
compound system is not generally expressible as the carte-
sian product of the states of its parts: e.g. the Einstein–
Podolsky–Rosen state of two photons, 0.7071(r1r2 − r2r1), 
to be discussed later, is not equivalent to any product of 
one-photon states.
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