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We consider the problem of secure identification: user U proves to server S that he knows 
an agreed (possibly low-entropy) password w , while giving away as little information 
on w as possible—the adversary can exclude at most one possible password for each 
execution. We propose a solution in the bounded-quantum-storage model, where U and 
S may exchange qubits, and a dishonest party is assumed to have limited quantum 
memory. No other restriction is posed upon the adversary. An improved version of the 
proposed identification scheme is also secure against a man-in-the-middle attack, but 
requires U and S to additionally share a high-entropy key k. However, security is still 
guaranteed if one party loses k to the attacker but notices the loss. In both versions, 
the honest participants need no quantum memory, and noise and imperfect quantum 
sources can be tolerated. The schemes compose sequentially, and w and k can securely 
be re-used. A small modification to the identification scheme results in a quantum-key-
distribution (QKD) scheme, secure in the bounded-quantum-storage model, with the same 
re-usability properties of the keys, and without assuming authenticated channels. This is in 
sharp contrast to known QKD schemes (with unbounded adversary) without authenticated 
channels, where authentication keys must be updated, and unsuccessful executions can 
cause the parties to run out of keys.

© 2014 Published by Elsevier B.V.

1. Introduction

Secure identification Consider two parties, a user U and a server S, who share a common secret-key (or password or Personal 
Identification Number PIN) w . In order to obtain some service from S, U needs to convince S that he is the legitimate user 
U by “proving” that he knows w . In practice—think of how you prove to the ATM that you know your PIN—such a proof 
is often done simply by announcing w to S. This indeed guarantees that a dishonest user U∗ who does not know w
cannot identify himself as U, but of course incurs the risk that U might reveal w to a malicious server S∗ who may now 
impersonate U. Thus, from a secure identification scheme we also require that a dishonest server S∗ obtains (essentially) no 
information on w .

✩ A preliminary version of this paper appeared in CRYPTO 2007.
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There exist various approaches to obtain secure identification schemes, depending on the setting and the exact security 
requirements. For instance zero-knowledge proofs (and some weaker versions), as initiated by Feige, Fiat and Shamir [19,18], 
allow for secure identification. In a more sophisticated model, where we allow the common key w to be of low entropy 
and additionally consider a man-in-the-middle attack, we can use techniques from password-based key-agreement (like [21,
20]) to obtain secure identification schemes. Common to these approaches is that security relies on the assumption that 
some computational problem (like factoring or computing discrete logs) is hard and that the attacker has limited computing 
power.

Our contribution In this work, we take a new approach: we consider quantum communication, and we develop two iden-
tification schemes which are information-theoretically secure under the sole assumption that the attacker can only reliably 
store quantum states of limited size. This model was first considered in [9]. On the other hand, the honest participants only 
need to send qubits and measure them immediately upon arrival, no quantum storage or quantum computation is required. 
Furthermore, our identification schemes are robust to both noisy quantum channels and imperfect quantum sources. Our 
schemes can therefore be implemented in practice using existing technology.

The first scheme is secure against dishonest users and servers but not against a man-in-the-middle attack. It allows the 
common secret-key w to be non-uniform and of low entropy, like a human-memorizable password. Only a user knowing 
w can succeed in convincing the server. In any execution of this scheme, a dishonest user or server cannot learn more on 
w than excluding one possibility, which is unavoidable. This is sometimes referred to as password-based identification. The 
second scheme requires in addition to w a uniformly distributed high-entropy common secret-key k, but is additionally 
secure against a man-in-the-middle attack. Furthermore, security against a dishonest user or server holds as for the first 
scheme even if the dishonest party knows k (but not w). This implies that k can for instance be stored on a smart card, and 
security of the scheme is still guaranteed even if the smart card gets stolen, assuming that the affected party notices the 
theft and thus does not engage in the scheme anymore. Both schemes compose sequentially, and w (and k) may be safely 
re-used super-polynomially many times, even if the identification fails (due to an attack, or due to a technical failure).

A small modification of the second identification scheme results in a quantum-key-distribution (QKD) scheme secure 
against bounded-quantum-memory adversaries. The advantage of the proposed new QKD scheme is that no authenticated 
channel is needed and the attacker can not force the parties to run out of authentication keys. The honest parties merely 
need to share a password w and a high-entropy secret-key k, which they can safely re-use (super-polynomially many 
times), independent of whether QKD succeeds or fails. Furthermore, like for the identification scheme, losing k does not 
compromise security as long as the loss is noticed by the corresponding party. One may think of this as a quantum version 
of password-based authenticated key exchange. The properties of our solution are in sharp contrast to all known QKD 
schemes without authenticated channels (which do not pose any restrictions on the attacker). In these schemes, an attacker 
can force parties to run out of authentication keys by making the QKD execution fail (e.g. by blocking some messages). 
Worse, even if the QKD execution fails only due to technical problems, the parties can still run out of authentication keys 
after a short while, since they cannot exclude that an eavesdropper was in fact present. This problem is an important 
drawback of QKD implementations, especially of those susceptible to single (or few) point(s) of failure [14].

Other approaches We briefly discuss how our identification schemes compare with other approaches. We have already 
given some indication on how to construct computationally secure identification schemes. This approach typically allows 
for very practical schemes, but requires some unproven complexity assumption. Another interesting difference between 
the two approaches: whereas for (known) computationally-secure password-based identification schemes the underlying 
computational hardness assumption needs to hold indefinitely, the restriction on the attacker’s quantum memory in our 
approach only needs to hold during the execution of the identification scheme, actually only at one single point during 
the execution. In other words, having a super-quantum-storage-device at home in the basement only helps you cheat at 
the ATM if you can communicate with it on-line quantumly—in contrast to a computational solution, where an off-line 
super-computer in the basement can make a crucial difference.

Furthermore, obtaining a satisfactory identification scheme requires some restriction on the adversary, even in the 
quantum setting: considering only passive attacks, Lo [24] showed that for an unrestricted adversary, no password-based 
quantum identification scheme exists. Lo’s impossibility result only applies if the user U is guaranteed not to learn anything 
about the outcome of the identification procedure. The impossibility of the general case has been shown in very recent 
work [4]. Using the definitions from [17], one can even show that the whole password of the honest player leaks to the 
dishonest player.

Another alternative approach is the classical bounded-storage model [25,5,1]. In contrast to our approach, only classical 
communication is used, and it is assumed that the attacker’s classical memory is bounded. Unlike in the quantum case 
where we do not need to require the honest players to have any quantum memory, the classical bounded-storage model 
requires honest parties to have a certain amount of memory which is related to the allowed memory size of the adversary: 
if two legitimate users need n bits of memory in an identification protocol meeting our security criterion, then an adversary 
must be bounded in memory to O (n2) bits. The reason is that given a secure password-based identification scheme, one 
can construct (in a black-box manner) a key-distribution scheme that produces a one-bit key on which the adversary 
has an (average) entropy of 1

2 . On the other hand it is known that in any key-distribution scheme which requires n bits 
of memory for legitimate players, an adversary with memory Ω(n2) can obtain the key except for an arbitrarily small 
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