
Theoretical Computer Science 560 (2014) 82–90

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Non-contextual chocolate balls versus value indefinite 

quantum cryptography

Karl Svozil

Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 December 2008
Accepted 11 May 2014
Available online 21 September 2014

Keywords:
Quantum information
Quantum cryptography
Singlet states
Entanglement
Quantum non-locality
Value indefiniteness
Contextuality

Some quantum cryptographic protocols can be implemented with specially prepared 
metaphorical chocolate balls representing local hidden variables, others protected by 
value indefiniteness cannot. This latter feature, which follows from Bell– and Kochen–
Specker type arguments, is only present in systems with three or more mutually exclusive 
outcomes. Conversely, there exist local hidden variable models based on chocolate 
ball configurations utilizable for cryptography which cannot be realized by quantum 
systems. The possibility that quantum cryptography supported by value indefiniteness 
(contextuality) has practical advantages over more conventional quantum cryptographic 
protocols remains highly speculative.

© 2014 Elsevier B.V. All rights reserved.

1. Quantum resources for cryptography

Quantum cryptography1 uses quantum resources to encode plain symbols forming some message. Thereby, the security 
of the code against cryptanalytic attacks to recover that message rests upon the validity of physics, giving new and direct 
meaning to Landauer’s dictum [36] “information is physical.”

What exactly are those quantum resources on which quantum cryptography is based upon? Consider, for a start, the 
following qualities of quantized systems:

(i) randomness of certain individual events, such as the occurrence of certain measurement outcomes for states which are 
in a superposition of eigenstates associated with eigenvalues corresponding to these outcomes;

(ii) complementarity, as proposed by Pauli, Heisenberg and Bohr;
(iii) value indefiniteness, as attested by Bell, Kochen and Specker, Greenberger, Horne and Zeilinger, Pitowsky and oth-

ers [1,2] (often, this property is referred to as “contextuality” [12,6,53]. Alas, contextual truth assignments are just one 
possibility among others to cope with the theorems mentioned, thereby providing a particular quasi-realistic, but not 
necessarily the only possible, “solution” or “interpretation” of those theorems [64]);

(iv) interference and quantum parallelism, allowing the co-representation of classically contradicting states of information 
by a coherent superposition thereof;
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1 In view of the many superb presentations of quantum cryptography — to name but a few, see Refs. [24,55] and [38, Chapter 6] (or, alternatively, [39, 
Section 6.2]), as well as [44, Section 12.6]; apologies to other authors for this incomplete, subjective collection — I refrain from any extensive introduction.
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Fig. 1. (Color online.) (a) Greechie diagram of L A,B , consisting of two separate Boolean subalgebras L A and LB ; (b) two-dimensional Hilbert space configu-
ration of spin- 1

2 state measurements along two non-collinear directions. As there are only two mutually exclusive outcomes, the dimension of the Hilbert 
space is two.

(v) entanglement of two or more particles, as pointed out by Schrödinger, such that their state cannot be represented as 
the product of states of the isolated, individual quanta, but is rather defined by the joint or relative properties of the 
quanta involved.

The first quantum cryptographic protocols, such as the ones by Wiesner [71] and Bennett and Brassard [8,7], just require 
complementarity and random individual outcomes. It may well be that a different quantum cryptographic scheme that uses 
stronger or additional powers provided by quantum theory, such as value indefiniteness (or, by another term, contextuality) 
manifesting itself in Bell– or Kochen–Specker type theorems [56,34,73,3,4,31,32,37,49,28], will provide an advantage over 
these former protocols.

Even nowadays it is seldom acknowledged that, when it comes to value definiteness, there definitely is a difference 
between two- and three-dimensional Hilbert space. This difference can probably be best explained in terms of (conjugate) 
bases: whereas different bases in two-dimensional Hilbert space are disjoint and totally separated (they do not share any 
vector), from three dimensions onwards, they may share common elements. It is this inter-connectedness of bases and 
“frames” which supports both the Gleason and the Kochen–Specker theorems. This can, for instance, be used in derivations 
of the latter one in three dimensions, which effectively amount to a succession of rotations of bases along one of their 
elements (the original Kochen–Specker [34] proof uses 117 interlinked bases), thereby creating new rotated bases, until the 
original base is reached. Note that certain (even dense [40]) “dilutions” of bases break up the possibility to interconnect, 
thus allowing value definiteness.

The importance of these arguments for physics is this: since in quantum mechanics the dimension of Hilbert space is 
determined by the number of mutually exclusive outcomes, a necessary condition for a quantum system to be protected 
by value indefiniteness thus is that the associated quantum system has at least three mutually exclusive outcomes; two 
outcomes are insufficient for this purpose. Of course, one could argue that systems with two outcomes are still protected 
by complementarity.

This article addresses two issues: a critical re-evaluation of quantum cryptographic protocols in view of quantum value 
indefiniteness; as well as suggestions to improve them to assure the best possible protection “our” [13, p. 866] present 
quantum theory can afford. In doing so, a toy model will be introduced which implements complementarity but still is value 
definite. Then it will be exemplified how to do perform “quasi-classical” quantum-like cryptography with these models. 
Finally, methods will be discussed which go beyond the quasi-classical realm.

2. Realizations of quantum cryptographic protocols

Let us, for the sake of demonstration, discuss a concrete “toy” system which features complementarity but (not) value 
(in)definiteness. It is based on the partitions of a set. Suppose the set is given by S = {1, 2, 3, 4}, and consider two of its 
equipartitions A = {{1, 2}, {3, 4}} and B = {{1, 3}, {2, 4}}, as well as the usual set theoretic operations (intersection, union 
and complement) and the subset relation among the elements of these two partitions. Then A and B generate two Boolean 
algebras L A = {∅, {1, 2}, {3, 4}, S} and LB = {∅, {1, 3}, {2, 4}, S} which are equivalent to a Boolean algebra with two atoms 
a1 = {1, 2} and a2 = {3, 4}, as well as b1 = {1, 3} and b2 = {2, 4} per algebra, respectively. Then, the partition logic [59,60,64]
consisting of two Boolean subalgebras L A ⊕ LB = L A,B = 〈{L A, LB}, ∩, ∪,′ , ⊂〉 is obtained as a pasting construction (through 
identifying identical elements of subalgebras [25,43,30]) from L A and LB : only elements contribute which are in L A , or in LB , 
or in both of them (i.e. in L A ∩ LB ) – the atoms of this algebra being the elements a1, . . . , b2 – and all common elements. 
In the present case only the smallest and greatest elements ∅ and S – are identified. L A,B “inherits” the operations and 
relations of its subalgebras (also called blocks or contexts) L A and LB . This pasting construction yields a non-distributive 
and thus non-boolean, orthocomplemented propositional structure [30,50]. Nondistributivity can quite easily be proven, as 
a1 ∧ (b1 ∨ b2) �= (a1 ∧ b1) ∨ (a1 ∧ b2), since b1 ∨ b2 = S , whereas a1 ∧ b1 = a1 ∧ b2 = ∅. Note that, although a1, . . . , b2 are 
compositions of elements of S , not all elements of the power set of S associated with a Boolean algebra with four atoms, 
such as {1} or {1, 2, 3}, are contained in L A,B .

Fig. 1(a) depicts a Greechie (orthogonality) diagram [25] of L A,B , which represents elements in a Boolean algebra as 
single smooth curves; in this case there are just two atoms (least elements above ∅) per subalgebra; and both subalgebras 
are not interconnected.
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