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a b s t r a c t

We give lower bounds on the growth rate of Dejean words, i.e.minimally repetitive words,
over a k-letter alphabet, for 5 ≤ k ≤ 10. Put together with the known upper bounds, we
estimate these growth rates with the precision of 0.005. As a consequence, we establish the
exponential growth of the number of Dejean words over a k-letter alphabet, for 5 ≤ k ≤

10.
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Letw = a1 · · · an be a word over an alphabetΣ . The number n is called the length ofw and is denoted by |w|. The symbol
ai of w is denoted by w[i]. A word ai · · · aj, where 1 ≤ i ≤ j ≤ n, is called a factor of w and is denoted by w[i : j]. For any
i = 1, . . . , n the factorw[1 : i] (w[i : n]) is called a prefix (a suffix) ofw. A positive integer p is called a period ofw if ai = ai+p
for each i = 1, . . . , n − p. If p is the minimal period of w, the ratio e(w) = n/p is called the exponent of w. Two words
w′, w′′ over Σ are called isomorphic if |w′

| = |w′′
| and there exists a bijection σ : Σ −→ Σ such that w′′

[i] = σ(w′
[i]),

i = 1, . . . , |w′
|. By K(w), we will denote the set of all words over Σ which are isomorphic to the word w. We also denote

by |A| the number of elements of a finite set A. Let |Σ | = k. It is easy to note that |K(w)| = k! if w contains at least k − 1
different symbols of Σ .

LetW be an arbitrary set of words. This set is called factorial if for any word w fromW all factors of w are also contained
in W . We denote by W (n) the subset of W consisting of all words of length n. If W is a factorial then it is not difficult to
show (see, e.g., [3,1]) that there exists the limit limn→∞

n
√

|W (n)| which is called the growth rate of words from W . For any
words u, v we denote by W (v)(n) the set of all words from W (n) which contain v as a suffix, and by W (u,v)(n) the set of all
words fromW (n) which contain v as a suffix and u as a prefix.

One can mean by a repetition any word of exponent greater than 1. The best known example of repetitions is a square;
that is, a word of the form uu, where u is an arbitrary nonempty word. Avoiding ambiguity,1 by the period of the square uu
we mean the length of u. In an analogous way, a cube is a word of the form uuu for a nonempty word u, and the period of
this cube is also the length of u. A word is called square-free (cube-free) if it contains no squares (cubes) as factors. It is easy
to see that there are no binary square-free words of length larger than 3. On the other hand, by the classical results of Thue
[20,21], there exist ternary square-free words of arbitrary length and binary cube-free words of arbitrary length. For ternary
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1 Note that the period of a square is not necessarily the minimal period of this word.
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square-free words this result was strengthened by Dejean in [9]. She found ternary words of arbitrary length which have
no factors with exponents greater than 7/4. On the other hand, she showed that any long enough ternary word contains a
factor with an exponent greater than or equal to 7/4. Thus, the number 7/4 is the minimal limit for exponents of avoidable
factors which is universally called the repetition threshold in arbitrarily long ternary words. Dejean conjectured also that the
repetition threshold in arbitrarily long words over a k-letter alphabet is equal to 7/5 for k = 4 and k/(k− 1) for k ≥ 5. This
conjecture is now proved for any k through the work of several authors [5–8,13,12,15,16].

Denote the repetition threshold in arbitrarily long words over a k-letter alphabet by ϕk. In the paper we will call the
words having no factors with exponents greater than ϕk minimally repetitive words or Dejean words. By S⟨k⟩(n) we denote
the number of all minimally repetitivewords of length n over a k-letter alphabet. Note that the set of all minimally repetitive
words is obviously factorial. So for any k there exists the growth rate γ ⟨k⟩

= limn→∞
n

S⟨k⟩(n).

The problem of estimating the number of repetition-free words has been investigated actively during the last decades
(reviews of results on the estimations for the number of repetition-free words obtained before 2008 can be found in
[2,10]). The most progress in this field has been made for the case of the binary alphabet. In this case Dejean words reduce
to overlap-free words which are also a classical object for combinatorial investigations. It is proved in [17] that the growth
of the number of binary overlap-free words is polynomial. Actually, binary overlap-free words of each length are counted
by a 2-regular function [4].

In [11] we proposed a new approach for obtaining lower bounds on the number of repetition-free words. Using this
approach, we obtained precise lower bounds for the growth rates of ternary square-free words, binary cube-free words,
and ternary minimally repetitive words. This approach proved to be very effective. In particular, in [19] Shur proposed
an interesting modification of our approach which allows to compute more effectively lower bounds for the growth
rates of words which contain no repetitions of exponent greater than or equal to a given bound if this bound is not less
than 2. The direction of our further investigations in this field is testing the proposed approach for ‘‘extreme’’ cases when
the prohibitions imposed on words are maximal possible for the existence of words of arbitrary length avoiding these
prohibitions. These cases are obviously the most difficult for obtaining lower bounds on the number of appropriate words.
The case ofminimally repetitivewords is a natural example of such ‘‘extreme’’ cases.Moreover, the general case ofminimally
repetitive words over a k-letter alphabet for k ≥ 5 when ϕk = k/(k − 1) is the most interesting for us. So this paper is
devoted to obtaining lower bounds on γ ⟨k⟩ for k ≥ 5 by using the proposed approach. Note that the method proposed
in [11] is not directly applicable to resolving this problem because of the huge size of required computer computations. In
this paperwepropose an improvement of thismethodwhich requires significantly fewer computer computations. Using this
improvement, we obtain lower bounds on γ ⟨k⟩ for 5 ≤ k ≤ 10which have the precision of 0.005. As an evident consequence
of these results, we establish the exponential growth of the number of minimally repetitive words over a k-letter alphabet
for 5 ≤ k ≤ 10 (for k = 3, 4 this fact was proved by Ochem in [14]).

2. Estimation for the number of minimally repetitive words

2.1. General

For obtaining a lower bound on γ ⟨k⟩ we will consider the alphabet Σk = {a1, a2, . . . , ak} where k ≥ 5. We denote the
set of all minimally repetitive words over Σk by F . By a prohibited factor we mean a factor with an exponent greater than
k/(k− 1). Letm be a natural number,m > k, and w′, w′′ be two words from F (m). We call the word w′′ a descendant of the
word w′ if w′

[2 : m] = w′′
[1 : m − 1] and w′w′′

[m] = w′
[1]w′′

∈ F (m + 1). The word w′ is called in this case an ancestor
of the word w′′. We introduce a notion of closed words in the following inductive way. A word w from F (m) is called right
closed (left closed) if and only if this word satisfies one of the two following conditions:

(a) Basis of induction. w has no descendants (ancestors);
(b) Inductive step. All descendants (ancestors) of w are right closed (left closed).

A word is closed if it is either right closed or left closed. We denote by F̂ (m) the set of all words from F (m) which are not
closed. By Lm we denote the set of all words over Σk such that the length of these words is not less than m and all factors
of length m in these words belong to F̂ (m). We also denote by Fm the set of all minimally repetitive words from Lm. Note
that a word w is closed if and only if any word isomorphic to w is also closed. So we have the following obvious fact.

Proposition 1. For any isomorphic words w′, w′′ and any n ≥ |w′
| the equality |F

(w′)
m (n)| = |F

(w′′)
m (n)| holds.

A word will be called rarefied if the distance between any two different occurrences of the same symbol in this word is
not less than k − 1.
Proposition 2. Any word from Lm is rarefied.
Proof. Let w be an arbitrary word from Lm. Assume that w[i] = w[j] where j < i ≤ j + (k − 2). Consider the factor
f = w[j : i]. Since |f | = i− j+ 1 ≤ k− 1 < m, in w the factor f is contained in some factor f ′ of lengthm. By the definition
of Lm we have f ′

∈ F (m), so f ∈ F . On the other hand, f has the period |f | − 1, so

e(f ) ≥
|f |

|f | − 1
=

i − j + 1
i − j

≥
k − 1
k − 2

>
k

k − 1

which contradicts the definition of F (m). �
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