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a b s t r a c t

We consider a Riemann surface X defined by a polynomial f (x, y) of degree d, whose
coefficients are chosen randomly. Hence, we can suppose that X is smooth, that the
discriminant δ(x) of f has d(d−1) simple roots,∆, and that δ(0) ≠ 0, i.e. the corresponding
fiber has ddistinct points {y1, . . . , yd}.Whenwe lift a loop 0 ∈ γ ⊂ C−∆ by a continuation
method, we get d paths in X connecting {y1, . . . , yd}, hence defining a permutation of that
set. This is called monodromy.

Here we present experimentations in Maple to get statistics on the distribution of
transpositions corresponding to loops around each point of ∆. Multiplying families of
‘‘neighbor’’ transpositions, we construct permutations and the subgroups of the symmetric
group they generate. This allows us to establish and study experimentally two conjectures
on the distribution of these transpositions and on transitivity of the generated subgroups.

Assuming that these two conjectures are true, we develop tools allowing fast proba-
bilistic algorithms for absolute multivariate polynomial factorization, under the hypoth-
esis that the factors behave like random polynomials whose coefficients follow uniform
distributions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

1.1. d-covering

A square-free bivariate polynomial equation f (x, y) = 0 defines a reduced curve X in C2. Dividing out by the gcd of the
coefficients of f viewed as a polynomial in y, we can assume that no irreducible component of X is a vertical line. The closure
of each connected component of X − Sing(X) corresponds to an algebraic curve whose equation is an irreducible factor of
f ; here Sing() denotes the singular locus, which consists at most in a finite number of points of X .

This characterization can be analyzed further using a projection. Let d be the degree of f in y and call π the projection of
X on the x-axis. Then, except for a finite number of values∆, π is d to 1. More precisely, X − π−1(∆) is a d-covering of the
x-axis minus∆; moreover, X is the union of s connected coverings Xi − π−1(∆).

For x0 not in ∆, the fiber E = π−1(x0) consists of d distinct points, partitioned in s subsets {Ei}si=1, with Ei lying on
Xi − π−1(∆) for 1 ≤ i ≤ s.
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1.2. Factorization

Our main motivation is to analyze and develop further factorization algorithms for bivariate polynomials in C[x, y] that
proceed by continuation methods. Factoring multivariate polynomials, either in the exact or approximate setting, is an
important problem in computer algebra. Thanks to Bertini’s theorem, the bivariate case captures its essential issues. See e.g.
[3,12,13] or [6] and their bibliography. The reader can also consider [20] for an history of early algorithms. [1] was the first
algorithmic paper using monodromy group action as developed below. The paper [17] considers point combinations, and
an exponential search. The papers [31,29,28] discuss another interesting algorithm based on zero-sum identities.

1.3. Continuation or homotopy methods

A continuationmethodwas proposed in [5]; it consists essentially in following a path inX accumulating sufficientlymany
points on the same connected component, say X1. An approximate interpolation provides a candidate factor f1 of f ; then an
approximate division is performed. Other authors proceed directly to the (parallel) interpolation of all s factors, but this
requires to estimate first the correct partition of a fiber E. In the first algorithmic paper using monodromy for factorization
[1], one needs to consider a set of representatives for the generators of the fundamental group, which consists of a huge
number of transpositions or other permutations.

Our study was initially motivated and inspired by the paper [32], which deals with a more general question of applying
homotopy techniques to solve systems of polynomials equations, and contains a way to confirm whether a potential
decomposition of the fiber is valid (this is described in [33]). Although the setting was different from ours (exact inputs,
approximations with a great precision and with slightly different monodromy actions and loops than the ones considered
here) , we borrowed the following important experimental observation which inspired our study: the partition of the fiber
E can be recovered from only a small number of permutations of E corresponding to the monodromy action.

As above, denote by X the curve in C2 defined by f (x, y) = 0, by π the projection on the x-axis and choose a generic
(i.e. random) fiber E = π−1(a) in X which has d points. To simplify the notations, we let a = 0. We denote by ∆ ∈ C the
discriminant locus of π :∆ is the set of roots of the resultant in y of f and its derivative in y f ′

y . The action of the fundamental
group π1(C −∆) on E defines the monodromy group G, which can be explicitly calculated. When f is irreducible, the orbit
of G is the whole fiber E, while when f = f1 · · · fs is composite, the orbits of G provide the s-partition of E by the subsets
formedby the roots of the factors fi. This is the key combinatorial informationwhich allows one to recover the factorization of
f via x-adicHensel lifting. See e.g. [9,33,3].Monodromy also plays an important role in the factorization algorithms presented
in [17,27,32,33,3,4,21].

1.4. A generic model

In [16], the following sub-generic situation was considered (it is the one encountered in several application and
benchmark examples): the polynomial to be factored is a product f = f1 · · · fs such that the curves Xi = f −1

i (0) are all
smooth and intersect transversely in double points (nodes), and that the projections of the critical points on the x-axis are
all distinct. As the Xi are smooth and cut transversely, the discriminant points of f are either simple (turning points of one
Xi) or double points (corresponding to projections of intersection points of two components Xi and Xj).

Our aim is to analyze and improve this approach. Here we will also assume that the coefficients of the factors fi are
independent random variables following a uniform (or a reduced normal distribution). As a consequence, with a high
probability, Xi := f −1

i (0) will be smooth complex curves intersecting transversely, and f will be monic in y of degree d,
hence fi will be also monic in y.

A main task is to better investigate what happens on a single random Riemann surface. This question has its own interest
and deserves to be studied for itself; it is also related to the so-called effective Abel-Jacobi problem and its applications in
Physics, see e.g. [35] and [9].

1.5. Organization

The paper is organized as follows. We first present the monodromy action in our particular setting and describe an
algorithmic approach and a Maple implementation for its computation (Section 2). We then expose in Section 3 our choices
for the implementation of the continuationprocedure. In Section 4, classical and recent results on the distribution of the roots
of random polynomials which are useful for our purpose are recorded; then, we formulate a conjecture on the distribution
of transpositions attached to the set of discriminant points; we also indicate the heuristic reasoning which guided the
formulation. In Section 5, we report results on transition to transitivity of subgroups generated by products of transpositions
and propose a conjecture directly related to our problem. We present, in Section 6, a methodology and some experiments
to support our conjectures and approach of the problem. In Section 7, we report experiments showing the robustness of
the studied strategy of factorization with respect to small perturbations of the input data. Section 8 discusses the expected
average complexity of our approach. Finally, we conclude by discussing possible extensions of our geometric model.

These results and statements were announced in a presentation [15] at the conference SNC’09.
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