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a b s t r a c t

We give a semantic account of the execution time (i.e. the number of cut elimination steps
leading to the normal form) of an untypedMELL net. We first prove that: (1) a net is head-
normalizable (i.e. normalizable at depth 0) if and only if its interpretation in the multiset
based relational semantics is not empty and (2) a net is normalizable if and only if its
exhaustive interpretation (a suitable restriction of its interpretation) is not empty. We then
give a semantic measure of execution time: we prove that we can compute the number of
cut elimination steps leading to a cut free normal form of the net obtained by connecting
two cut free nets by means of a cut-link, from the interpretations of the two cut free nets.
These results are inspired by similar ones obtained by the first author for the untyped
lambda-calculus.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Right from the start, Linear Logic (LL, [12]) appeared as a potential logical tool to study computational complexity. The
logical status given by the exponentials (the new connectives of LL) to the operations of erasing and copying (corresponding
to the structural rules of intuitionistic and classical logic) shed a new light on the duplication process responsible for the
‘‘explosion’’ of the size and time during the cut elimination procedure. This is witnessed by the contribution given by LL to
the wide research area called Implicit Computational Complexity: a true breakthrough with this respect is Girard’s Light
Linear Logic (LLL, [13]). A careful handling of LL’s exponentials allows the author to keep enough control on the duplication
process, and to prove that a function f is representable in LLL if and only if f is polytime.
One of the main questions arisen from [13] is the quest of a denotational semantics suitable for light systems (a semantics
of proofs in logical terms, or more generally a model). Among the main attempts in this direction we can quote on the
one hand [18,1], where the structures (games, coherent spaces) associated with logical formulas1 are modified so that the
principles valid in LL but not in the chosen light system do not hold in the semantics, and on the other hand [17] which deals
with a property of the elements of the structures (the interpretations of proofs) characterizing those elements which can
interpret proofs with bounded complexity.

A different approach to the semantics of bounded time complexity is possible: the basic idea is to measure by
semantic means the execution of any program, regardless of its computational complexity. The aim is to compare different
computational behaviors and to learn afterwards something on the very nature of bounded time complexity. This line of
research springs out from the quantitative semantics of the untyped λ-calculus, interpreting terms as power series. The
work by Ehrhard and Regnier [10,11] relates the powers appearing in the interpretation of a λ-term with the number of
steps needed by the so-called Krivine machine to evaluate the head-normal form of the λ-term (if any). Following this
approach, in [5,6] one of the authors of the present paper could compute the execution time of an untyped λ-term from its
interpretation in the Kleisli category of the comonad associated with the finite multisets functor on the category Rel of sets
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1 The basic pattern of denotational semantics is to associate with every formula an object of some category and with every proof of the formula a
morphism of this category called the interpretation of the proof.
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and relations. Such an interpretation is the same as the interpretation of the net translating the λ-term in themultiset based
relational model of linear logic. The execution time is measured here in terms of elementary steps of the Krivine machine.
Also, [5,6] give a precise relation between an intersection type system introduced by [2] and experiments in the multiset
based relational model. Experiments are a tool introduced by Girard in [12] allowing to compute the interpretation of proofs
pointwise. An experiment corresponds to a type derivation and the result of an experiment corresponds to a type.2

We apply here this approach to Multiplicative and Exponential Linear Logic (MELL), and we show how it is possible
to compute the number of steps of cut elimination by semantic means (notice that our measure being the number of
cut elimination steps, here is a first difference with [5,6] where Krivine’s machine was used to measure execution time).
Linear Logic offers a very sharp way to study Gentzen’s cut elimination by representing proofs as graphs with boxes, called
proof-nets [12]. The peculiarity of proof-nets is to reduce the number of commutative cut elimination steps, which instead
abounded in sequent calculi. If π ′ is a proof-net obtained by applying some steps of cut elimination to π , the main property
of any model is that the interpretation [[π ]] of π is the same as the interpretation [[π ′]] of π ′, so that from [[π ]] it is clearly
impossible to determine the number of steps leading from π to π ′. Nevertheless, if we consider two cut free proof-nets π1
and π2 connected by means of a cut-link, we can wonder:
(1) is it the case that the thus obtained net can be reduced to a cut free one?
(2) if the answer to the previous question is positive, what is the number of cut reduction steps leading from the net with

cut to a cut free one?

Themain point of the paper is to show that it is possible to answer both these questions by only referring to [[π1]] and [[π2]].3
The first questionmakes sense only in an untyped framework (in the typed case, cut elimination is strongly normalizing;

see [12]), and indeed Section 2.1 is devoted to define an untyped version of Girard’s proof-nets, based on previous works,
mainly [3,21,17,20]. Terui [23] also introduced a calculus corresponding to an untyped and intuitionistic version of proof-
nets of Light Affine Logic and [4] addressed the problem of characterizing the (head-)normalizable nets in this restricted
setting. We shift here from the intuitionistic to the classical framework. Let us mention here that to improve readability we
chose to state and prove our results for proof-nets (i.e. logically correct proof-structures), but correctness (in our framework
Definition 3) is rarely used (see also the concluding remarks, Section 6). The cut elimination procedure we define is similar
to λ-calculus β-reduction, in the sense that the exponential step (the step (!/?) of Definition 6) is more similar to a step of
β-reduction than it usually is. This is essential to prove our results (see the discussion on Fig. 5).

We consider in the paper two reduction strategies: head reduction and stratified reduction. The first one consists in
reducing the cuts at depth 0 and stop. The second one consists in reducing a cut only when there exists no cut with (strictly)
smaller depth. These reduction strategies extend the head (resp. leftmost) reduction of λ-calculus.

We mention the recent papers [14] and [15], where the complexity of linear logic cut elimination is analysed by means
of context and game semantics. It is very likely that our approach and those of [14,15] are closely related. A fine analysis of
this relation should help to clarify the correspondences between relational and game semantics.

Section 2 is devoted to define our version of proof-net (Section 2.1) and themodel allowing tomeasure the number of cut
elimination steps (Section 2.2). In Section 3, we show how experiments provide a counter for head and stratified reduction
steps (Lemmas 17 and 20). In Section 4 we answer question (1), and in Section 5 we answer question (2).

Let us conclude with a little remark. In [22], the question of injectivity for the relational and coherent semantics of LL
is addressed: is it the case that for π1 and π2 cut free, from [[π1]] = [[π2]] one can deduce π1 = π2? It is conjectured that
relational semantics is injective for MELL, and there is still no answer to this question. Given π1 and π2, we do not know
how to compute the normal form of the net obtained by connecting π1 and π2 by means of a cut-link from [[π1]] and [[π2]].
The present paper shows that from [[π1]] and [[π2]]we can at least compute the number of cut elimination steps leading to
the normal form.

2. Preliminaries

We introduce the syntax and the model for which we prove our results: the untyped nets and their interpretation in the
category Rel of sets and relations.

2.1. Untyped nets

After their introduction by Girard in [12], proof-nets have been extensively studied and used as a proof-theoretical tool
for several purposes. All this work led to many improvements of the original notion introduced by Girard.
We use here an untyped version of Girard’s proof-nets. Danos and Regnier [3,21] introduced and studied ‘‘pure proof-nets’’
that is the exact notion of proof-net corresponding to pure λ-calculus. There has been no real need for a different notion
of untyped proof-net until Girard’s work on Light Linear Logic [13]: Terui [23] introduces a ‘‘light’’ untyped λ-calculus

2 The intersection type system considered in [5,6] lacks idempotency and this fact was crucial in that work. In the present paper, this corresponds to the
fact that we use multisets for interpreting exponentials and not sets as in the set based coherent semantics. The use of multisets is essential in our work
too.
3 The questions (and the answers) are more general than it seems: every proof-net with cuts is the reduct of some proof-net obtained by cutting two cut

free proof-nets (Proposition 34).
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